You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Chapter 3: Fringe Deciphering Techniques Applied to Analog Holographic Interferometry
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
Different types of interferometers can be used to produce a fringe pattern phase modulated by the physical quantity being measured. Several physical quantities can be measured with interferometric fringe techniques, such as strain and stress analysis, temperature deformation and gradient, surface deformation, and many others. The ultimate goal of fringe pattern analysis is to decipher the underlying phase profile that encodes information about the physical parameter being measured. This chapter reviews many techniques often used in fringe analysis that are also useful in holographic interferometry analysis. Interferograms can be divided into two general categories:
(a) those containing a spatial carrier in the interferometric pattern, typically introduced through a tilt in the reference wavefront; and
(b) those in which no spatial carrier exists, which will produce additional difficulties in automatically deciphering the interferograms.
This chapter starts by explaining the frequency-domain fringe deciphering techniques that assume a spatial carrier exists. In Section 3.3, the concept of fringe orientation and direction is applied to fringe deciphering. In Section 3.4, phase demodulation using the Hilbert transform is discussed in detail, including its relation to fringe orientation and direction. In Section 3.5, the concept of fringe skeletonization and normalization is applied to fringe processing; Section 3.6 introduces fringe contrast enhancement. Finally, a brief discussion of phase unwrapping for interferogram analysis is discussed in Section 3.7.
Online access to SPIE eBooks is limited to subscribing institutions.