You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Chapter 16: Application of Dielectric Elastomer EAP Actuators
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
Electroactive polymers (EAPs) that are suitable for actuators undergo changes in size, shape, or stress state upon the application of an electrical stimulus. Much research in the field of EAPs tends to focus on the development and understanding of the polymer materials themselves. However, practical devices require that changes in dimension and stress state be effectively exploited to produce the desired functionalities (e.g., driving the motion of a robot limb or simply changing appearance or surface texture). This chapter focuses on those issues that must be considered in implementing EAP materials in practical devices.
For purposes of discussion we will focus on one particular type of electroactive polymer: dielectric elastomers. In the literature [e.g., Liu, Bar-Cohen, and Leary, 1999] and elsewhere in this book, dielectric elastomers are also known as electrostatically stricted polymers. Dielectric elastomers are a type of electronic EAPs as defined in Chapter 1 of this book - in that their operation is based on the electromechanical response of polymer materials to the application of an electric field. They have demonstrated good performance over a range of performance parameters and thus show potential for a wide range of applications. Dielectric elastomers were pioneered by SRI International, but several research groups around the world are actively investigating applications of this technology [e.g., Wingert et al., 2002; Sommer-Larsen et al., 2001; Jeon et al., 2001]. While the principle of operation of dielectric elastomer EAPs is not used with all EAPs, many of the issues we will discuss are common to all. These issues include the high compliance and large strains that EAPs can produce, as well as the necessity of simultaneous consideration of both the electrical properties and mechanical properties of materials.
This chapter is organized as follows. First, we consider the specifications used to match actuation technologies with applications, and when it makes sense to consider EAPs. Next, we discuss the basic principles of dielectric elastomer technology. We then consider design issues that may affect the actuation performance of dielectric elastomer EAPs, as well as the operational characteristics of EAPs and how they may affect an application. We present several examples of dielectric elastomer actuators for a wide range of applications, highlighting both the potential advantages of EAPs and the challenges associated with their use. Finally, we conclude with a brief summary of the subchapter and a discussion of the future of EAP application.
Online access to SPIE eBooks is limited to subscribing institutions.