Access to eBooks is limited to institutions that have purchased or currently subscribe to the SPIE eBooks program. eBooks are not available via an individual subscription. SPIE books (print and digital) may be purchased individually on SPIE.Org.

Contact your librarian to recommend SPIE eBooks for your organization.
Chapter 2:
Fourier Integrals and Fourier Transforms
Abstract
The concept of an infinite series dates back as far as the ancient Greeks such as Archimedes (287-212 b.c., who summed a geometric series in order to compute the area under a parabolic arc. In the eighteenth century, power series expansions for functions like e x , sin x, and arctan x were first published by the Scottish mathematician C. Maclaurin (1698-1746), and British mathematician B. Taylor (1685-€“1731) generalized this work by providing power series expansions about some point other than x=0 . By the middle of the eighteenth century it became important to study the possibility of representing a given function by infinite series other than power series. D. Bernoulli (1700-1783) showed that the mathematical conditions imposed by physical considerations in solving the vibrating-string problem were formally satisfied by functions represented as infinite series involving sinusoidal functions.
Online access to SPIE eBooks is limited to subscribing institutions.
CHAPTER 2
65 PAGES


SHARE
Back to Top