You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Chapter 5: Tissue Structural Properties Studies at Optical Immersion
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
Many biological tissues are optically anisotropic. Tissue birefringence results primarily from the linear anisotropy of fibrous structures, which form extracellular media. The refractive index of a medium is higher along the length of a fiber than along the cross section [Fig. 45(a)]. A specific tissue structure is a system composed of parallel cylinders that create a uniaxial birefringent medium, with the optic axis parallel to the cylinder axes. This is called birefringence of form. A large variety of tissues, such as eye cornea, tendon, cartilage, eye sclera, dura mater, testis, muscle, nerve, retina, bone, tooth, myelin, etc., exhibit form birefringence. All of these tissues contain uniaxial andâor biaxial birefringent structures. For instance, in bone and tooth, these are mineralized structures originating from hydroxyapatite crystals, which play an important role in hard tissue birefringence. In particular, dental enamel is an ordered array of such crystals surrounded by a protein/lipid/water matrix.
Online access to SPIE eBooks is limited to subscribing institutions.