Access to SPIE eBooks is limited to subscribing institutions. Access is not available as part of an individual subscription. However, books can be purchased on SPIE.Org
Chapter 3:
Canonical Representation
Author(s): Edward R. Dougherty
Published: 1998
DOI: 10.1117/3.268105.ch3
A random function is a complicated mathematical entity. For some applications, one need only consider second-order characteristics and not be concerned with the most delicate mathematical aspects; for others, it is beneficial to find convenient representations to facilitate the use of random functions. If an appropriate canonical representation can be found, then dealing with a family of random variables defined over the domain of t is reduced to considering a discrete family of random variables. Equally as important is that, whereas there may be a high degree of correlation among the random variables composing the random function, the random variables in a canonical expansion are uncorrelated. The uncorrelatedness of the Z k is useful in eliminating redundant information and designing optimal linear filters.
Online access to SPIE eBooks is limited to subscribing institutions.

Linear filtering

Back to Top