Access to SPIE eBooks is limited to subscribing institutions. Access is not available as part of an individual subscription. However, books can be purchased on SPIE.Org
Chapter 6:
The Stabilizing-Functional Approach to Regularization
Published: 2011
DOI: 10.1117/3.903451.ch6

6.1 Introduction

Signal formation is often represented by the standard linear model:

y = Hx + n, (6.1)

where x and y are the original and observed signals, respectively, and n is the additive noise due to the measuring device. Signal restoration is the process of inferring the best estimate for the target signal x given the observed signal y and some prior knowledge, if available, about the target.

An inverse problem is said to be ill posed when direct inversion does not ensure the existence, uniqueness, and stability of a solution. Signal restoration generally belongs to this class of problems, and regularization theory formulates how solutions may be found for such ill-posed problems. One method for developing such solutions is the stabilizing-functional approach wherein the ill-posed problem is recast as a constrained minimization of a chosen functional, which is called a stabilizing functional.

The first regularization techniques for signal restoration were often based on mean-square norms. It has been shown that such constrained least-squares approaches are related to the stabilizing-functional approach via quadratic functionals of a special form. Here, we will be concerned with using the nonquadratic functionals typically encountered in information theory.

Online access to SPIE eBooks is limited to subscribing institutions.

Signal processing

Detection theory

Information theory

Instrument modeling

Interference (communication)

Inverse problems

Measurement devices

Back to Top