You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
3.1 Introduction
In addition to the gamma function, there are numerous other special functions whose primary definition involves an integral. Some of these functions were introduced in Chap. 2 along with the gamma function, and in this chapter we consider several others.
The error function derives its name from its importance in the theory of errors, but it also occurs in probability theory and in certain heat conduction problems on infinite domains. The closely related Fresnel integrals, which are fundamental in the theory of optics, can be derived directly from the error function. A special case of the incomplete gamma function (Sec. 2.5) leads to the exponential integral and related functionsâthe logarithmic integral, which is important in analysis and number theory, and the sine and cosine integrals, which arise in Fourier transform theory.
Elliptic integrals first arose in the problems associated with computing the arclength of an ellipse and a lemniscate (a curve in the shape of a figure eight). Some early results concerning elliptic integrals were discovered by L. Euler and J. Landen, but virtually the whole theory of these integrals was developed by Legendre over a period spanning 40 years. The inverses of the elliptic integrals, called elliptic functions, were independently introduced in 1827 by C. G. J. Jacobi (1802â1859) and N. H. Abel (1802â1829). Many of the properties of elliptic functions, however, had already been developed as early as 1809 by Gauss. Elliptic functions have the distinction of being doubly periodic, with one real period and one imaginary period. Among other areas of application, the elliptic functions are important in solving the pendulum problem (Sec. 3.5.2).
Online access to SPIE eBooks is limited to subscribing institutions.