You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
The German astronomer F. W. Bessel (1784â1846) first achieved fame by computing the orbit of Halley's comet. In addition to many other accomplishments in connection with his studies of planetary motion, he is credited with deriving the differential equation bearing his name and carrying out the first systematic study of the general properties of its solutions (now called Bessel functions) in his famous 1824 memoir. Nonetheless, Bessel functions were first discovered in 1732 by D. Bernoulli (1700â1782), who provided a series solution (representing a Bessel function) for the oscillatory displacements of a heavy hanging chain (see Sec. 6.7.1). Euler later developed a series similar to that of Bernoulli, which was also a Bessel function, and Bessel's equation appeared in a 1764 article by Euler dealing with the vibrations of a circular drumhead. J. Fourier (1768â1836) also used Bessel functions in his classical treatise on heat in 1822, but it was Bessel who first recognized their special properties.
Bessel functions are closely associated with problems possessing circular or cylindrical symmetry. For example, they arise in the study of free vibrations of a circular membrane and in finding the temperature distribution in a circular cylinder. They also occur in electromagnetic theory and numerous other areas of physics and engineering. In fact, Bessel functions occur so frequently in practice that they are undoubtedly the most important functions beyond the elementary ones.
Because of their close association with cylindrical domains, the solutions of Bessel's equation are also called cylinder functions.
Online access to SPIE eBooks is limited to subscribing institutions.