You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Chapter 18: Elementary Theory of Optical Coherence: Part III
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
We have discussed partially coherent imaging and the effects of partial coherence on the operation of various instruments. Because of the basic nonlinearity in partially coherent imaging systems, it is only in very restrictive cases that it is possible to state with mathematical precision that partial coherence creates no problem in a particular imaging system. Through analysis of the experimental results, one can construct a nomograph describing the conditions of partial coherence under which the imaging system is linear.
The effects of partial coherence on an imaging system depend on both the value of R, the ratio of the numerical aperture of the objective to the numerical aperture of the condenser, and on the extent to which the object contains frequencies beyond the cutoff of the imaging objective. The cutoff of the imaging objective depends on its numerical aperture (NA). Coherence effects thus depend on R, the spatial frequency content of the object, and the NA of the imaging objective. These variables have been combined in an empirically determined nomograph (shown in Fig. 18.1) to give the conditions under which coherence effects are essentially absent in an imaging system. In this figure, L denotes the limiting spatial frequency in the target. Two sets of values of L are shown in Fig. 18.1. One set corresponds to the choice of N = 4 in Eq. (17.2), and the other set corresponds to the more conservative choice of N = 10.
Online access to SPIE eBooks is limited to subscribing institutions.