You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Chapter 5: Image Formation in Terms of the Impulse Response
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
In the previous chapter, we showed that a stationary linear optical system using incoherent light could be completely described in terms of a convolution integral relating the object distribution Iobj(xâ²) to the image distribution Iim(x). In such a description, the optical system is characterized by its impulse response, i.e., the point image. Mathematically, these statements are summarized in the following integral [see Eq. (4.14)]: I im (x)=â«I obj (x â² )S(xâx â² )dx â² .
In this chapter, several relatively simple imaging problems will be analyzed with the aid of Eq. (5.1). In general, this approach to the imaging problem is too cumbersome to be used for detailed calculations and a more generally useful technique will be introduced in another chapter. However, it is instructive to carry out the convolution process for a few simple examples in order to develop some insight into the physical limitations on image quality which are introduced by the diffraction theory. To keep the computational difficulty to a minimum, the examples in this chapter are limited to a one-dimensional optical system. The concepts are readily generalized to two dimensions; however, details of the calculations become unwieldy.
Online access to SPIE eBooks is limited to subscribing institutions.