You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
Many measurements in radiometry start with the use of a source. It illuminates an optical system or a detector. It may be part of a measurement of reflectance or transmittance. Sources are part of radiometry.
A comprehesive list of sources and their properties is not possible in the scope of this text. This chapter is intended to provide an overview and perspective rather than handbook data. Two good references for more detail, and for more references may be consulted.
Sources may be categorized in a number of ways, but surely they separate into laser and non-laser sources. Laser sources need to be described in terms of their wavelength of operation, power, and whether or not they are continuous. If they are not continuous, then their repetition rate and pulse characteristics are important. For both types, beam spread and lifetime are also important. The other sources consist of cavity radiators, arc lamps, incandescent (mostly tungsten) lamps, and special types.
6.1 Laser Sources
There are many types of lasers: gas, diode, dye, excimer, and more. They also operate either as fixed-wavelength sources or can be tunable. The latter differentiation is made here.
6.1.1 Fixed-Wavelength Lasers
The type that comes immediately to mind is the ubiquitous helium-neon (He-Ne) laser, which is a cheap, stable workhorse for almost every laboratory. It can be operated at several wavelengths, but the most common is the red line at 0.6328 μm. In this mode, it has an output power from 1 to 10 milliwatts. This laser can also be operated at 1.15 and 3.5 μm but with reduced performance in terms of both stability and power output.
Online access to SPIE eBooks is limited to subscribing institutions.