You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Abstract
4.1 Introduction
So far, it has been assumed that light propagates as rays. This is not the case. Rays only exist in theory and are a convenient basis for geometric optics. In reality, rays are lines drawn in the direction of the propagation of light. They are the normals to the wavefront in the direction of the flow of the radiant energy. This is indicated in Fig. 4.1, where light radiates from a point source P in spherical waves. After exiting an aberration-free optical system, the wavefront converges precisely toward point Pâ².
If the media through which the light travels are not isotropic, the wavefront is no longer spherical. Advantage is taken of this fact with gradient index material to form the desired wavefront shape.
To explain the concept of wave aberration in this fundamental text, we limit ourselves to the discussion of the spherical aberration. It is sometimes desirable to compare the results obtained with geometrical optics. This will be done for third-order spherical aberration. For an in-depth study, the reader is encouraged to consult references 1 and 2.
4.2 Diverging and Converging Waves
Light emanating from a point source forms a diverging spherical wavefront. After passing through a fitting optical system, it is converted into a converging wavefront, aiming for the axial image point as indicated in Fig. 4.1.
Online access to SPIE eBooks is limited to subscribing institutions.