Access to eBooks is limited to institutions that have purchased or currently subscribe to the SPIE eBooks program. eBooks are not available via an individual subscription. SPIE books (print and digital) may be purchased individually on SPIE.Org.

Contact your librarian to recommend SPIE eBooks for your organization.
Chapter 8:
Gegenbauer, Jacobi, and Orthogonal Polynomials
Abstract
In earlier chapters we dealt with special sets of orthogonal polynomials, namely, Chebyshev and Hermite polynomials. In Chs. 9 and 10 we will study other orthogonal polynomials, namely, Laguerre and Legendre. All of these polynomial functions share many properties. This indicates that these polynomials are special cases of more general polynomials—Gegenbauer and Jacobi polynomials named after Leopold Gegenbauer (1849–1903) and Carl Gustav Jacob Jacobi (1804–1851). Gegenbauer polynomials are connected with axially symmetric potentials, while Jacobi polynomials are even more general, with Jacobi polynomials containing Gegenbauer polynomials as a special case. Collectively, these polynomials are called classical orthogonal polynomials. In this chapter we look at some of the elementary properties of these polynomials; the reader is referred to other texts for detailed descriptions.
Online access to SPIE eBooks is limited to subscribing institutions.
CHAPTER 8
14 PAGES


SHARE
Back to Top