Chapter 11:
More on Other Crystals: Fluorides and Vanadates
Authors(s): Yehoshua Y. Kalisky
Published: 2006
DOI: 10.1117/3.660249.ch11
Abstract
The development of laser diode-pumped solid state lasers (LDPSSL) and laser diode technology has accelerated in the last 20 years and revolutionized solid state laser technology. The advent of new diode laser arrays, bars, and stackable diodes, as well as developments in other material science and optics fields, enhanced the development of LDPSSLs. These developments have led to novel laser crystals and unique optical methods to couple the diode light into the crystal. A solid state laser system is a combination of both the hosting crystal and the doped ion. In the case of rare-earth ions, the emission bandwidth is relatively narrow. The type of the doped ion determines the peak of the laser emission wavelength. Therefore, one can control the emission-wavelength peak by selecting the appropriate ion. Examples were discussed previously and include Nd 3+ , Yb 3+ , Tm 3+ , Ho 3+ , and Er 3+ for laser emission in the spectral range of 1-€“3 mm. Also, a spectral shift of the emission peak of the same ion doped in various hosts is influenced to a small extent by the crystal field of the solid state host. The emission peak of Nd:YAG is centered at 1060 nm, Nd:YVO 4 at 1064 nm, and Nd:YLF at 1047 or 1057 nm, depending on the emission polarization. The thermal and mechanical properties of the laser crystals are dominated by the nature of the host laser crystal through the mechanical-strength parameters, thermal coefficient, hardness, elastic properties, thermal expansion coefficient, and other properties. The subject was discussed in more detail in Secs. 4.1 and 5.1.
Online access to SPIE eBooks is limited to subscribing institutions.
CHAPTER 11
31 PAGES


SHARE
Back to Top