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Abstract. Fluorescence in situ hybridization (FISH) is a molecular di-
agnostic technique in which a fluorescent labeled probe hybridizes to
a target nucleotide sequence of deoxyribose nucleic acid. Upon exci-
tation, each chromosome containing the target sequence produces a
fluorescent signal (spot). Because fluorescent spot counting is tedious
and often subjective, automated digital algorithms to count spots are
desirable. New technology provides a stack of images on multiple
focal planes throughout a tissue sample. Multiple-focal-plane imaging
helps overcome the biases and imprecision inherent in single-focal-
plane methods. This paper proposes an algorithm for global spot
counting in stacked three-dimensional slice FISH images without the
necessity of nuclei segmentation. It is designed to work in complex
backgrounds, when there are agglomerated nuclei, and in the pres-
ence of illumination gradients. It is based on the morphological top-
hat transform, which locates intensity spikes on irregular back-

grounds. After finding signals in the slice images, the algorithm groups
these together to form three-dimensional spots. Filters are employed
to separate legitimate spots from fluorescent noise. The algorithm is
set in a comprehensive toolbox that provides visualization and ana-
Iytic facilities. It includes simulation software that allows examination
of algorithm performance for various image and algorithm parameter
settings, including signal size, signal density, and the number of slices.
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suitable excitation. FISH is an excellent method for the detec-

1 Introduction
Recent advances in molecular medicine have provided agg';eosf gene copy number alterations in cancer and other dis-

greater opportunity to understand the genetic basis of disease, Application of FISH technology has been hampered be-
as well .as the cellular m.echamsms of d{sea.\se, and to Selecrcause fluorescent spot counting is tedious, inaccurate, often
appropriate treatments with the greatest likelihood of success.pighly subjective, and subject to substantial intraobserver
One such technique for molecular diagnosimisitu hybrid- variability. It also requires a highly trained technician to rec-
ization in which labeled hybridizing agenfsuch as deoxyri-  ognize the cells or tissue to be analyzed, and who can recog-
bose nucleic acigDNA), ribonucleic acid, or single stranded nize and count tiny fluorescent spots accurately. Finally, at
or double stranded DNA probgare exposed to intact tissue most 100 or 200 cells are typically analyzed per specimen,
sections. The probes can be labeled by direct or indirect and in the case of gene amplification, much less than that
means. When fluorescent dyes are used as labels, the tech(Such as 20 per specimen
nique is referred to as fluorescende situ hybridization AN instrumental impediment to accurate FISH spot count-
(FISH).1=*The probe hybridizes to a defined target nucleotide Ing 'S_that _the probes hybridize throughout a thr(_ee-
. dimensional tissue sample, and therefore the use of a single

sequence of DNA in the cell, and the dye fluoresces to some; : o

. . ocal plane can result in a low estimation of the number of
particular color when excited by a mercury arc lamp or argon

X i ) spots. This can happen in two ways. First, a lower signal
laser(in the case of a laser scanning microscopp that the  eqits for spots outside the focal plane, thereby exacerbating

labeled probe can be visually detected when the probed tissugne confusion between true spots and noise, and resulting in a
is viewed through a microscope. Each chromosome contain-|ow estimation of the number of true spots. Second, if one

ing the target DNA sequence will produce a fluorescent signal spot lies below another, they produce a single signal relative
(spod in every cell when the specimen is illuminated with to the focal plane, and again there is low spot estimation.

Although automated FISH spot
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ognized by a probe on the X chromosome labeled with spec-
trum orange(to provide an orange-red spot sighand the
reference probe could be labeled with spectrum gfezpro-
vide a green spot signafor the centromere of the X chromo-
some. A single green signal would therefore be observed in
the nuclei of the schematic representation of Figues ftom
male cells(which have only one X chromosomenvhile two

2) green signals would be seen in female cells. Amplification of
the gene of interest would be noted in certain cells in the
schematic representation of Figuré)lin which there is an
increase in the ratio of red signals to green signals.

- o o Relative to Figure (g) it is conventional to count the num-
4 o °s % ber of signals in each nucleus of a large number of cells. This
e R S a}pproach has been aqlopted becausg the amplification or qlgle-
o oo °p .. . tion of a gene occurs in large populations of cells, and signifi-

cant changes in the copy numbers of genes are often only
detected by examining a large number (&dr example, at
least 200 cells. Because the amplification has been consid-
ered to be a nuclear event, a change in the copy number of a
Fig. 1 Two-color FISH. gene with respect to each nucleus has been counted, both
manually and in automated systems.

Our approach hergFigure 1b)] avoids nuclear segmenta-

counting algorithms have been developed based on a singlefion by determining the probe ratios without reference to the
focal plane®~ they have been subject to both problems. Sat- Cells (or the nucleuscontaining the probes. Thus, FigurélL
isfactory results have been achieved by using the morphologi- Shows the FISH spots of Figurdal in a region of interest
cal top-hat transform in a Bayesian context, where prior dis- [such as the microscope field of view shown in Figute) 1
tributions are assumed for spot and noise intensiti€his but without reference to the nuclear contduid/e calculate
approach takes into account the distribution of intensities re- the ratio of test probeged to reference probegreen. This
sulting from a single focal plane; however, it requires accurate ratio provides sufficient information over a sufficiently large
prior distributions and therefore is very sensitive to image number of cells in a region of interest to be informative about
acquisition, in particular, precise protocol implementation on the relative amplification or deletion of a target gene. In some
the part of technicians. instances, a region of interest is a microscopic field of view at
New technology now allows the cost-efficient acquisition low magnifications(e.g., 100-208). An entire microscope
of a stack of images on multiple focal planes throughout a field of view can then be used for the image capturing and
tissue sample. Each of these provides an intensity gradient atanalysis at 400—1000 magnification(x40—100 objectives
a particular focal plane, and thereby overcomes the two low for FISH analysis. The thickness of the tissue sections used
biases mentioned previously. This paper presents an algorithmfor FISH analysis is the same as in sections routinely used for
for three-dimensional spot estimation from the image stack by pistopathological analyses, ranging from 4-Ah thickness.
using the morphological top-hat transform on each slice im-  \yg note that a different algorithm for multiple-focal-plane
age in the stack. Owing to the greater accuracy of the Spotg sp spot counting has been propoSeBesides involving
intensity readings, good results are obtainable without a Baye- jiterent image processing tools, that algorithm requires nu-

S|a2 n;eth%doll?gty. . " ted i i | clei segmentation and assumes even illumination. By using
rithms ::Vtvh;f deoeﬁrjz\gzgsor??hzrgi; ctis(ﬁloofcr?uucnlelgg b?)l?r?(-i the top-hat transform as the basis for spot identification, the

; . P - ; Do algorithm introduced here is fairly insensitive to substantial
aries. This can be extremely difficulbr impossible in many . ) N .

. . - : . . and irregular illumination gradients.
kinds of tissue sections. Moreover, overlapping nuclei require The alaorithm is presented as a moroholoaical algorithm
segmentation. Not only is segmentation difficult for irregu- d P . . P 9 gort

for counting three-dimensional grains via multiple slice im-

larly shaped nuclei, or nuclei sitting within complex back- . .
grounds, even when nuclei are successfully segmented, theréges It belongs to the large class of morphological algorithms
used for counting grains, without reference to the particular

is the problem of determining to which nuclei a spot belongs. S ) -
The difficulty is illustrated in Figure (). The figure illus- ~ FISH application, and is based on the morphological top-hat

trates two-color FISH, in which two probes are labeled with transform:®**Other morphological grain-counting algorithms
different dyes that fluoresce with different colors. The red depend on different morphological transformations, including
label (black may, for example, be attached to a probe that those based on the watershed transforméfiot and those
hybridizes to a gene of intereuch as a hormone receptor involving granulometric measuremerifs'®

gene that may be amplified in certain tumofEhe green label There exist commercial software packages for single-
(gray) may be attached to a probe that hybridizes to a known focal-plane spot counting and, more recently, for multiple fo-
chromosomal locus that is not expected to vary in disease cal planes. We do not wish to comment on these because we
stateg(such as the centromere of a chromosome on which the do not have access to the details or knowledge of the kinds of
gene of interest is foundThe gene of interest could be rec- images for which they give satisfactory results.

b)
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2 Morphological Algorithm for Spot Estimation gk=f—Ta(fy), )

The algorithm has the follewing general structure. A morpho- wherel'g(f ) is the gray-scale opening by the flat structuring
logical top-hat transform is applied to each Iofgray-scale  gjementB, which is taken to be &5 square, but could be
slice images to yield. outputs, each possessing brightness cposen differently for different kinds of images and image
intensity spikes jutting above a fairly flat background. Each \egqiytions(block 3. Figure 4 illustrates application of the
bright spike can correspond either to a signal or to noise. EaChtop-hat transform on a signal possessing spikassignal: (b)

top-hat image is thresholded to produce a stack dfinary opening of the signal(c) top-hat signal; andd) binarization
images showing spike locations. Morphological filters are ap- ot the top-hat signal via a threshol@ (to be discussed

plied to the binary images to eliminate noise, an_d touching_ shortly). The opening is defined by s(f)=Ag[Es(f)],

spots are segmented. Binary spot markere occurring as verti-yhare Ag and Eg are the gray-scale dilation and erosion,

cal neighbors in the stac_k are grouped into one final spot respectively, byB, and are calculated by

located at a particular assigned stack level. Various algorithm

parameters are set accor_ding to _characteristics of the physical As(F)(xy)=maxf(x+x',y+y):(x',y') e B,

images. These include window size for the top-hat transform,

threshold levels, and sizes of filter structuring elements. i / PN (! At

For a detailed description of the algorithm? we begin with Ea(f)(xy)=min{f(x+x"y+y"):(x",y") € B}.

an intensity function£(x,y,z), defined on three-dimensional  Efficient implementation of the opening is achieved by struc-

(3D) space. To model the situation in whig¢hresults from a  turing element decomposition. Lettirgy By, and B, be the

set of concentrated 3D intensity signals, assume it can be5X5, 1X5, and5X 1 centered structuring elements, respec-

decomposed as tively, Eg(f)=Eg,[Eg,(f)] and Ag(X)=Ag,[Ag (f)].
The max-top-hat-imagey.{X.y), is formed by taking pixel
maxima over the slice top-hat image®lock 4). The

)

! i smoothed histogranti,,, of the top-hat maximum is then
g(xayyz): ¢(Xay,z)+21 ai(X,y,Z)-l- Zl ﬁj(xyy,z), Computed(bk)Ck 5)
. (1) Each top-hat imagg, needs to be thresholded to obtain a

binary image whose components mark spikes in the slice im-
age f, .. The algorithm provides two methods to find the
thresholdT (block 6). The first method, a variant of a standard
approach, estimates the minimum between the peaks of the
histogram representing the high-intensity spikes and the lower
intensity background. The program calculates the point with
the first maximum value oH,,q. This point gives the first
peak of the graph ofl,,q. We would like to use the deriva-
tive of H g to find the minimum between the first and second
peaks ofH 4, but even with smoothingH g is not suffi-
ciently smooth. To avoid the small changes in the graph, we
instead compute the differential operators

whereaq,as,,...,a, denote individual intensity functions cor-
responding to physical entities to be countgd,B,,...,8m
denote noise, and¢ denotes background intensity.
aq,as,...,a, Will be referred to as spots. We have modeled
the overall intensity function via a sum of intensity signals
only to provide a framework for understanding the algorithm.
In fact, the actual manner in which local intensities are com-
bined to form¢& is no doubt very complicated and dependent
on various aspects of the image acquisition technology and
intensity formation. Moreover, the background functiérin-
cludes all sources of energy outside of the intensity functions
themselves. In FISH¢ includes nuclei. The task of our algo- _ AN
rithm is to estimaten. In giving a detailed algorithm descrip- d1=Hmig(M=1) = Huyig(m),
tion, we will refer to the block diagram of Figure 2. _
The intensity¢ is sampled by taking slices at values d2=Hpmig(m) —Hpig(m+1),
of z thereby vyielding L gray-scale slice images, and find the point for whichl,d,<0. If there is more irregu-
fo(x,y),f1(X,y),....fL_1(X,y). These slice images are the larity in the histogram, it can be better to use an increment

4

actual input to the algorithrtblock 1). From them, we calcu-  larger than 1 in the differential operators. If desired, the his-
late the max-imagd,,,{(Xx,y), formed by taking pixel maxima  togram can be displayed on screen and the threshold changed
over the slice imageélock 2. The histograms of .« and on-line. If H,,jq has only one peak, then the method cannot be
fmid,» the midlevel slice image, are calculated and smoothed used to findT and we employ the second method, which uses
by a moving average filter to forml,,{m) and H,4(m), Hiop, the histogram of the top-hat image after smoothing. The
respectively(block 5). method just described, usitty,iq, is the default choice of the

Figure 3 shows five slice images, sampled from top to algorithm.
bottom from a total of 16 slices, and the max-image arising  Because the spatial areas of the spikes in the slice images
from normal glands. In our nomenclature, these slices form comprise only a small portion of slice-image area, and since
Stack 64-TRI(red dye. As expected for normal glands, there the gray-levels of the nonspike region @, tend to be
is an equal number of androgen receptdR) signals and small, the mass ofi,, is concentrated mainly at low values.
reference probe signals, since normal glands do not haveMoreover, wherH,, drops off permanently to small values,

chromosomal aberrations. The red/gréefifC/TRITC) ratio these small values result from high intensitiegj,,. Hence,
is therefore 1. Image size #£36X 345pixels, magnificationis T can be chosen as a domain pointtif,, at the place where
X100, and the stack step size is 0,38. this final falloff is commenced. Specifically, is the point at

For each slice imagg,, the top-hat transform is calculated  which the derivative oH,, falls below a very small thresh-
by old.
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Fig. 2 Diagram of the algorithm.

T having been determined, each top-hat transfoxmis to 1) (block 9). For processing efficiency, the filtering is per-
thresholded byT, thereby yielding in a binary image having formed inside the segmentation routine. Following the dele-
value 1 at(x,y) if gu(X,y)>T and value 0 ifg,(x,y)<T tions, each binary image is of the form
(block 7). Figure 5 shows the top-hat image from the middle
slice shown in Figure 3 from Stack 64-TR#,,, and the
resulting binarization by. Each binary image is composed of n(k)
disjoint maximally connected components. These components Xe= U Cy, (5)
are segmenteddentified and labeled using a rapid procedure =1

whose details we omitblock 8. A component with too few

pixels, below a specified thresholf is deleted under the

assumption that it either represents noise or a small tail of awhere Cy;,Cys,,...,Cpy are the components of,. Each
spot whose main concentration is in other slicemay be set componentCy, will be called a slice signal. The following
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(a)  max-image (b) slice 0

() slice 4 ‘ () slice 8

(e) slice 12 (f) slice 15

Fig. 3 The max image and five slices of the stack.

data are stored for each slice sig@athe cente(xc,yc), the to omit from further processing all componentsXg,a, Pos-
cardinality, and the coordinates of the minimal bounding rect- sessing less than a required number of pixbleck 14). De-
angleR. leted components are not discarded, but stored in case one

A binary maximum imageXax, iS obtained by taking the
maximum of the slice signaléblock 10, the segmentation
routine is applied toX,ax, and the same data are stored for
Xmax (block 12. Figure 6 shows examples o, compo-
nents and binary slice images benexth,,. The numbers at

desires to redo the analysis with a lower threshold. For each
bounding rectangle iX,,.,, we elicit from previous steps all
slice signals lying spatially within the rectanglblock 11).

The slice signal with the largest cardinality is called the main
the top of the figure correspond to the enumeration of the inge S‘Q”a' gnd others are tagged as bging abgve or below the
bounding rectangles foX .. The numbers at the bottom in ~ M&in slice signal for the rectangle. This ordering is used for
brackets give the numbers of pixels in the spots. In rectangle Visualization and for subsequent processiblpck 13. One

No. 76 the algorithm performs a horizontal segmentation to Needs to be cognizant of the possibility that there may be
find two spots; in No. 85 it performs a vertical segmentation; more than one spot associated with a rectangle. The main slice
and in No. 124 it performs a segmentation in which there is signal may represent one of a number of spots lying in the
vertical and horizontal interaction. A threshold filter is applied stack beneath the rectangle. Graphical tools can be used to
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Fig. 4 Top-hat transform: signal, opening, top-hat, threshold.

display a stack of images in which the main slice signal is
shown, along with slices above and below the main slice.

T-HT of slice 8

Histogram of T-HT for slice 8 (T=11)
0.2

0.18
0.16

0.14
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0.08 Binarization of T-HT of slice 8

0.06
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0.02

Fig. 5 Binarization of slice 8.

relatively high threshold is chosen, then most of the binary
images will be null, and a few consist of a single component
about the(x, y) center of;. One of these components, say
Cy, will include the others as subsets, a@¢ can be associ-
ated withe; . If the spots and noise functions composing the
intensity function in Eq(1) are noninterfering and the thresh-
old can be picked to yield null binary slice images for egich
and at least one non-null binary slice for eagh, then the
number of spots is found exactly by counting the number of
maximal components resulting from the labels. This ideal
situation is not typical. First, when the labels are densely
packed, they will agglomerate to some degree; indeed, even if
the nuclei are sparse in FISH images, it is possible for labels
to be interfering. Second, the label and noise slice images are
usually not sufficiently different to exactly separate them by a
thresholded top-hat transform.

More generally, suppose spet produces a set of (i)
non-null binary slice images, where the non-null binary slice
images appear in a sequence of adjacent slices and the fore-
ground of each binary slice image corresponding;tds con-
nected. The slice images need to be grouped together to form
a single spot for counting. The problem with counting spots is
that the slice images from a particular spot are not necessarily
separated from those of a different spot. This means that a
slice signal may be composed of slice images from more than
a single spot. Moreover, if one label is above another, there
may not be a slice separating their slice images; indeed, ow-
ing to thresholding sensitivity, it may not be that all binary
slices corresponding to a single spot are connected. Therefore
to count spots, the slice signals must be segmented and then
the resulting images combined in such a way as to provide

The next stage of the algorithm analyzes the slice signals estimates of the spots.
associated with each rectangle and estimates the number of There are various ways in which spot contiguity manifests

spots associated with the rectangle. If taken alone, a @pot
produces an intensity functiof = ¢+ «; and slice signals
fio,fi1,....fi,L—1. Applying the top-hat transform to the slice
signals yields top-hat signatsio,0is,...,0iL -1, and thresh-
olding yields the binary slice images$,Xi;,....X; 1. If,
momentarily, we assume that; is a radial function and a

114 Journal of Biomedical Optics ¢ January 2002 * Vol. 7 No. 1

itself in the slice images. Many are handled by the algorithm.
Others are eliminated by the deletion of very small compo-
nents prior to formation of the slice signals. For a situation
that is too complicated for the algorithfnot recognized by

the algorithm, the data(all channel$ in that portion of the
stack images are not used. The data correspond to a single
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Morphological Spot Counting from Stacked Images . . .

#91 #124 #168 #205

Fig. 6 Decomposition of eight spots by slices.

component of the max image. This situation has proven to be plicated in Figure ), where application of does not sepa-

very rare in practice. To explain the kinds of contiguities
treated by the algorithm, we refer to Figure 7. Each part of the
figure shows a two-dimensioné2D) idealization of the spot

rate the slice signals of the two spots. This case is recognized
by two conditions:(1) each slice beneath the maximum com-
ponent contains at most a single slice sign@); running

situation, the components resulting from the spots, and the downward, the pixel-count sequence has two local maxima

resulting slice signals after deletion of too-small components
by the thresholdr. In each case, the topmost line represents
Xmax- Segmentation need only be applied locally under con-
nected components o ay-

In Figure {a), the labels are vertically contiguous, but are
separated upon application of the threshald@wo spots are
formed: the upper and lower sets of vertically contiguous
slices. Note that we are implicitly defining a spot to be a
collection of binary components. The situation is more com-

Fig. 7 Examples of spot view by Z axis.

and a local minimum between the two maxima that has at
leastk pixels less than the smaller of the two maxima, where

Kk IS some preassigned parameter. The second condition in-
sures that there are two spots, not a single large one. To form
two spots as in the case of Figuréa) the local minimum
between the maxima is deleted. Af is not obtained, then
segmentation will not occur and the algorithm will estimate
there to be a single spot. A horizontal touching case is shown
in Figure 7c). After the application of the threshold there is

one large segment slice, two signal slices above the large
slice, and two signal slices below the large segment slice.
Upon the segmentation of the large slice, two spots are
formed. Finally, Figure {#l) shows another situation where
there are two spots corresponding to one signal slice in the
max-image. These can be isolated into two spots because they
do not touch. These segmentation and grouping techniques are
implemented in block 16. Graphical tools are available for
visualization of reconstructed spots. In Figure 8, the algorithm
identifies three spots in the red channel.

At this point, there aréN spots,S;,S,,...,Sy, each com-
posed of one or more binary slice signals. No two slice signals
from separate spots contain common binary pixels. The iden-
tified spots are visually shown on the max-imageven
though there may be more than one because of vertical occlu-
sion). Each spot corresponds to an authentic spot or to noise.
Prior to counting it is necessary to select the authentic spots
(block 17). To filter out small spots, we define a size measure
¢ and a thresholg such that spoSis classified as authentic
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Fig. 8 Complex particle No. 81 with 21 pieces on eight slices consists of three spots.

Spots of twe probes for stacksd (RAG=0.97)

Fig. 10 Green and red spots on stack64.
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130 spots (+3 hididen) on Max-image of stack6dTRI after filt ering 3-pixel spots

ia) red channel

125 zpots (+46 hidden) on Max-image of stackG4FIT after filt ering 3-pixel spots

ib) green channel

Fig. 9 The maximum images of the filtered stacks.
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(b) red channel

Fig. 11 The maximum images of the stack87.

if and only if ¢(S)=p. A straightforward approach is to de- huge spots are also not likely to be authentic. These are lo-
fine ¢(S) to be the maximum of the pixel counts in the binary cated on the max-image by utilizing the minimum bounding
components composing This approach works fairly well. A rectangles. For each rectandreghe algorithm takes the prod-
problem with it is that narrow spots may be missed if their uct of the maximum intensity withilR and the area oR. If
elongated axis lies vertically so that the maximum of the com- this exceeds a preset threshold, then the spot is not counted.
ponent pixel counts is not large, whereas the volume of the Figure 9 shows the marked max-images for red-channel im-
spot is relatively large. This problem is addressed by defining age (stack64TR) and the green channéstack64FIT after

¢o(S) to be the sum of the pixel counts in the components filtering.

composingS. We have found that this latter approach works In addition, if two spots appear the same in both the red
best. Not only is it necessary to eliminate small noise spots; and green channels, then we conclude that they result from
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Table 1 Accuracy of automated spot counting in tissue sections.

Specimen FISH probes Red/green spots Automatic ratio Manual ratio
Normal prostate AR/Xcen 95/96 0.99 1.0
Normal prostate AR/Xcen 124/126 0.98 1.0
Normal prostate AR/Xcen 92/91 1.01 1.0
Prostate cancer HER2/17cen 212/199 1.07 1.0
Breast cancer 17923/17cen 763/79 9.66 10.6

fluorescent noise, since it is very unlikely that they would The results from five other stacks are given in Table 1. The
appear together if they were legitimatglock 15. Spots are columns give the specimen, FISH probes, spot counts found
considered the same in both channels according to a thresholdy the algorithm, the ratios corresponding to the algorithm
v: if the number of pixels in the symmetric difference of the spot counts, and the ratios from manual counting. The abbre-
spots does not exceagl then the spots are considered to be viations for the FISH probes aréAR=androgenreceptor,

the same. In practice; has been chosen to be very small, no Xcen=X centromere,Her2=Her-2 gene, 17cen=17 cen-
greater than 2. Figure 10 shows the max-image containingtromere, and 17923 is the chromosome location of the Her-2
both red and green signals, with spots appearing in both chan-gene.

nels being shown in yellow.

4 Simulation Software

3 Experimental Results To study problems such as the number of slices required for
To illustrate the basics of the algorithm, we have used the good estimation, we have built simulation software for the
red-dye stack64TRI from normal glands. The corresponding model of Eq.(1) under the assumption that the background is
green-dye stack is stack64FIT. Here we summarize the re-flat. This assumption means that the top-hat transform has
sults. Thresholding the top-hat images for stack64TRI yields performed well, since the top-hat transform performs a local
1166 slice signals across all 16 slices. Using the threshold thresholding to eliminate background effects. In practice, the
=1, no slice signals are eliminated. With the spot-size thresh- top-hat transform has worked very well, so that this assump-
old ¢(S)=3, there are 133 spot8 of these being hidden in  tion is warranted. The simulation is in the framework of the
the max image A 5X 5 top-hat transform has also been used MATLAB -based graphical user interfa@@UI). It takes a geo-
for the green-dye stack stack64FIT. For this stack, 1233 slice metrically simple form of Eq(1) in which the spots are in-
signals have been found, and following the threshe(®) tensity functions defined on three-dimensional balls distrib-
=3, there are 137 spotésix hidden. This gives a ratio of uted in a 3D cube of dimensioM$X M X H. In effect, we are
133/137%0.97 prior to the final filtering of large spots and dealing with a four-dimensional image. Each ball has a bright-
spots showing identically on both channels. There are six too- ness functiona(X,y,z), with the maximum intensity at the
large spots for stack64TRI, ten too-large spots for stack64FIT, center and the intensity falling radially to the outside. The
and 16 identical spots. This gives final counts of 111 for both GUI allows the visualization of the balls as well as their 2D
stacks, a ratio of 1. projections onto slices, which themselves appear as ordinary
For a second example, we consider stack87, in which thereimages. The dynamic interface provides the manipulation of
is a large amplification, and in which there are ten slices. Here various parameters, such as the box size, number of balls, ball
there are clusters in the red channel and the (FERITC) radii, and intensity functions. It also allows one to choose a
signals greatly outnumber the gre€@RITC) signals. In our desired number of slices of the modeled four-dimensional
notation, the two stacks are stack87FIT and stack87TRI. The (4D) image, along with storage of slices and data derived
max images are shown in Figure 11. Following application of from each slice. The GUI has many graphical tools, including
the top-hat transform, there are 4083 slice signals in the reddisplaying and printing data in the form of 2D and 3D images,
channel, and this is reduced to 1732 by the threshek8. plotting histograms, and displaying density functions.
After grouping the algorithm yields 46@even hiddenspots. Two distributions must be specified for the random model.
In this case, setting(S)=3 means there is no further filter- A numberk of balls is selected, and the ball locations are
ing. For the green channel, there are 366 slice signals anduniformly distributed in the box. An intervdll,R] is set for
none are filtered out by the threshote= 3. Grouping yields ball radii. The radii are beta distributed in the interval, and the
88 spots and the thresholg S) =3 reduces this to 71three chosen beta distributioB(«, ,8,) can be displayed. The de-
hidden). In this case, no spots are removed because they arefault beta distribution is the uniform distribution over the in-
too large or cross channels. Hence, the final ratidG9/71 terval. Once a ball has been chosen, a radial intensity function
=6.6. This estimate is below the manually counted ratio of must be defined over the ball. As presently constructed, these
10. The problem appears to be too few slices. In fact, when intensity functions are symmetric beta densities, and the
the same samples are examined using 15 slices, the algorithmmaximum intensity(at the center of a ballsatisfies a beta
gives a ratio of 9.5. distributionB(«; ,Bi) -
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Fig. 12 Random 4D ball of radius 12.

Once a set of balls is generated according to the random  To illustrate the random model, we use 128 balls in the box
model, a numben of desired slices is chosen, a set of equa- 512x 640X 64. The radii interval i1, 16] and the radii pos-
tions describing model geometry is automatically solved, and sess a beta distribution witl, = 1.5 and 8, = 4.0. The inten-
the slices are displaye@nd storegl The morphological spot- gty interval is[0, 255 and the intensity distribution is set
counting algorithm is applied to the model by applying it to with a;=5.0 and ;= 2.5. Figure 13 shows the balls in the
the slices. The GUI allows the number of slices to be changed. box allosent their irlltensity functiortehich, as shown in Fig-

Fi 12 sh i i [ i : e
oflgtllireeballs ows the rendering of an intensity ball and a slice ure 12, can be seen quite well on the monitdising 22

Model: 128 random balls

ol o L

-"“-'L'
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Fig. 13 128 random balls.
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Fig. 14 Error of counting of 128 balls.

slices, a total of 312 slice signals result. With the threshold segment them and there is less chance they will be confused
=2, the algorithm gives the correct number of spots, 12B with noise. Thus, centromeric probes tend to produce more
hidden. If we use less than 22 slices, the algorithm does not accurate results than those that attach to uniqgue DNA se-
perform as well for the model with the given settings. For ~ quences. Imaging at sufficient resolution and using a suffi-
<22, the sampling raténumber of slicesis too low. Forn cient number of slices to discriminate the sequence probes
=22, the algorithm does very well, with at most two errors from noise alleviates this problem.
for 22<n=40, the range tested. The error curve, with the Except for parameter setting the algorithm is fully auto-
percentage error as a function of the number of slices is mated. In practice, parametric settings are stable for a consis-
shown in Figure 14. tent imaging environment, and for fixed parameters the results
Besides the effect of the number of slices, the model can have been robust relative to modest changes in imaging envi-
be used to check many other effects on the algorithm. The ronment. The salient situation in which the algorithm is sen-
model can have both spots and noise, and the distributions ofsitive to parametric settings is when there is large amplifica-
these can be varied to check the effects of model parameterdion, say, in the neighborhood of 10—1. At that point, there are
on separating spots from noise. The ball locations can be many tight clusters in which the spots are very small and
made nonuniform, in particular, they can be made to cluster to often contiguous. This can result in an undercount, and the
check the effect of the algorithm on clustered spots. The spotsalgorithm can report a ratio as low as 5-1. Still, a high am-
can be made smaller or larger, and dimmer or brighter. More plification is detected. Moreover, the algorithm has a facility
peaked or flatter intensity functions can be studied. The model that identifies clusters and reports their number, thereby alert-
provides a toolbox to study the spot counting algorithm, or ing the user to the cluster problem.
derivatives of the algorithm that might be developed in the
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