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Abstract. Cycle spinning, a technique mainly used for wavelet de-
noising, has also been shown to be successful toward image reso-
lution upscaling in the wavelet domain. We propose a directional
variant of the cycle spinning methodology. We obtain estimates of
local edge orientation from a wavelet decomposition of the available
low-resolution image and use this information to influence the
choice of cycle spinning parameters that are employed for resolution
upscaling. Our experimental results show that the proposed method
outperforms competing methods for a wide range of images offering
modest but consistent improvements both in objective as well as
subjective terms. Lower computational complexity compared to the
conventional cycle spinning is also demonstrated. © 2005 SPIE and
IS&T. �DOI: 10.1117/1.2061247�

1 Introduction
A common feature of wavelet domain image resolution up-
scaling algorithms is the assumption that the image to be
enhanced is the low-pass filtered subband of a wavelet-
transformed high-resolution �HR� image. Then the detail
wavelet coefficients in subbands containing high-pass spa-
tial frequency information are estimated and the HR image
is obtained by inverse wavelet transform. In Ref. 1, detail
coefficients are estimated using the evolution of wavelet
transform extrema in coarser subbands. A similar but less
computationally expensive approach is advocated in Ref. 2.
In Ref. 3 a technique is proposed that takes into account the
hidden Markov tree �HMT� approach. The HMT-based
methods have been further developed not to require any
training data set.4

The decimated wavelet transform is not shift-invariant
and, as a result, inaccurate representation of wavelet
coefficients—for example, due to quantization or non-exact
estimation—introduces cyclostationarity into the image,
which manifests itself as ringing in the neighborhood of
discontinuities. Cycle-spinning �CS�, introduced in Ref. 5,
has been shown to be an effective method against ringing
when used for denoising purposes. In Refs. 6 and 7, it was
shown that CS, applied as a postprocessing operation,
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yields improvements in the framework of JPEG and
JPEG2000. Recently, it has been shown that it is also a
powerful alternative to competing methods, when applied
to image resolution upscaling problems in the wavelet
domain.8

Since its introduction, the basic CS algorithm has hardly
evolved apart from an iterative variant in Ref. 9. This in-
volves iterated applications of a processing chain consisting
of forward translation, wavelet denoising, and backward
translation. Although this scheme was shown to improve
upon the basic CS in wavelet denoising problems, it doesn’t
lend itself to wavelet domain resolution upscaling. In the
resolution upscaling context, the upscaled image, which is
the output of the previous iteration, would need to be
downsampled before being fed as input into the next, nul-
lifying the effects of the preceding iteration.

We introduce the concept of directional cycle spinning.
In particular we take into account local edge orientation
information derived from a wavelet decomposition of the
available low-resolution �LR� image to influence key pa-
rameters of the CS algorithm.

2 Image Resolution Upscaling Using Cycle
Spinning

Image resolution upscaling involving CS typically consists
of two steps, namely, wavelet-domain zero padding �WZP�
followed by the application of a CS operator.

In the first step, an initial approximation to the unknown
HR image is generated using WZP: Using the available LR
image x of size m�n, the unknown HR image y is recon-
structed by using zero padding of high-frequency �HF� sub-
bands followed by inverse wavelet transform:

ŷ0 = W−1� x 0m,n

0m,n 0m,n
� �1�

where 0m,n is an all-zero matrix of size m�n and W−1 is the
inverse discrete wavelet transform. This implies a simpli-
fied image formation process whereby the point spread
function is associated with the low-pass wavelet filter ker-
nel used for the above transformation. The HR approxima-
tion obtained as above commonly exhibits artifacts such as
smoothing and ringing. The ringing emerges at the vicinity
of discontinuities as alternating undershoots and overshoots
of the intensity level. CS has been shown to be an effective
means to reduce these artifacts by averaging out the trans-
lation dependence.5 For the image resolution upscaling pur-

Fig. 1 PSNR �dB� values for the different quadrants of the synthetic

image using different CS directions.
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poses, a variant of the CS methodology is applied as a
second step as follows:8 First a number of LR images x̂i,j
are generated from ŷ0 by �1� spatial shifting, �2� wavelet
transformation, and �3� discarding the HF coefficients: x̂i,j
=DWSi,jŷ0 where D represents discarding of HF coeffi-
cients, W denotes wavelet transform, and Si,j is a shift op-
erator applying horizontal and vertical shifts of �i , j� in the
range i , j� �−k ,−k+1, . . . ,k−1,k�. Then, Eq. �1� is applied
to all x̂i,j yielding N ŷi,j images, where N= �2k+1��2k+1�.
Finally, these intermediate HR images are re-aligned and
averaged to give the final HR reconstructed image: ŷ
= �1/N��i=−k

k � j=−k
k Si,j

−1ŷi,j where Si,j
−1 is the inverse of the

shifting operator Si,j.

3 Directional Cycle Spinning
In conventional CS as described above, all possible shifts
within a range that defines a local neighborhood are used.
Nevertheless, a closer inspection of artifacts in a typical HR
image generated using WZP reveals that ringing artifacts
not only occur in the vicinity of strong edges but, more
importantly, they are strongly correlated with the orienta-
tion of those edges. In particular, for an edge of a given
orientation, ringing is more pronounced in the normal di-
rection. This is due to the fact that ringing artifacts materi-
alize as a result of undershoots and overshoots of sharp
intensity level changes. This observation suggests that CS
should be predominantly applied across edges �i.e., verti-
cally in the vicinity of a horizontal edge and vice versa�
avoiding other orientations and thus preventing unneces-
sary smoothing of image detail.

To test this conjecture, we have used the synthetic image
shown in Fig. 1. We consider this synthetic image as the
ground truth HR image we seek to reconstruct. Then we
generate an LR version of it by low-pass filtering followed
by downsampling. Finally we obtain approximations to the

Table 1 PSNR �dB� values for 2� �256�256 to 5

Image/Method

Lena

2� 4� 2�

Bilinear 30.13 24.06 30.6
Bicubic 31.34 26.76 31.1
Genuine Fractals11 33.65 28.01 32.7
NEDI10 34.10 28.81 32.8
WZP 34.45 28.84 33.2
HMM3 34.52 28.86 33.3
Regularity Preserving2 34.48 28.81 33.2
WZP and CS8 34.93 29.27 33.5
WZP and Directional CS 35.09 29.55 33.7

Fig. 2 Shifts used for different directional CS types.
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original HR image using WZP followed by CS applied at
different orientations: nondirectional �NCS�, horizontal
�HCS�, vertical �VCS�, or diagonal �DCS�. Figure 2 indi-
cates the patterns used for CS �shift locations used are
shown as shaded elements� with the no shift location occu-
pying �0,0�. For example HR reconstructions using HCS
and VCS are obtained respectively using

Ch =
�i=−k

k
ŷi,0

2k + 1
and C� =

� j=−k

k
ŷ0,j

2k + 1
�2�

where ŷi,j are the intermediate HR images corresponding to
a shift of �i , j� as explained in Sec. 2.

PSNR values of the HR reconstruction for each quadrant
and for each CS orientation are shown in Fig. 1 while the
best value is shown in boldface. Our results confirm that
the best reconstruction always occurs by CS in the direction
of the normal to dominant edges while in the absence of
such edges nondirectional CS is preferable. The gain is
more pronounced in HCS and VCS, while DCS brings a
more modest improvement.

4 Algorithm Description
Our approach uses a local estimate of image directional
activity to influence the orientation in which CS is applied.
This estimate is obtained by using a wavelet decomposition
of the available LR image x.

Let LH0 and HL0 denote respectively the HF horizontal
and vertical detail subbands of x and wh

r,s and w�
r,s denote

the wavelet coefficients at position �r ,s� of LH0 and HL0

respectively. We partition x into nonoverlapping blocks and
estimate horizontal and vertical activity measures for the
p’th block as Ah

p=�r,s�wh
r,s� and A�

p=�r,s�w�
r,s� respectively;

2� and 4� �128�128 to 512�512� enlargement.

e Baboon Peppers

4� 2� 4� 2� 4�

25.38 22.85 20.43 30.01 24.37
28.93 22.98 21.02 30.28 26.86
29.58 23.78 21.10 33.79 28.55
29.97 23.87 21.18 33.54 28.52
30.44 24.22 21.47 33.94 29.57
30.46 24.24 21.47 34.04 29.58
30.42 24.24 21.47 34.03 29.57
30.78 24.28 21.54 34.32 29.87
30.98 24.37 21.67 34.50 30.14

Fig. 3 Extract from original Lena �a� and images for 4� reconstruc-
tions: bilinear interpolation �b�, WZP �c�, and directional CS �d�.
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summation is over all wavelet coefficients contained in
block p. Finally, block p in the HR image is reconstructed
by using these activity values as weights to the correspond-
ing reconstructions generated using Eq. �2�:

ŷp =
Ah

pC�
p + A�

pCh
p

Ah
p + A�

p . �3�

It has been found that the extra computational complexity
brought by application of diagonal CS hardly justifies the
relatively insignificant gain it provides and hence excluded
from the algorithm.

5 Experimental Results
The proposed method has been tested on a number of well-
known test images. An HR version of these images �512
�512� was used as ground truth for performance evalua-
tion purposes. The wavelet transform was implemented us-
ing the well-known Daubechies 9 /7 filters, the maximum
shift k was set to 5, and block sizes were 8�8. The pro-
posed method has been compared with other wavelet based
methods as well as an edge directed10 and a fractal-based11

method. PSNR values are tabulated in Table 1 for both 2
� and 4� enlargement factors. Figures 3 and 4 respec-
tively show the enlarged images and amplified residual im-
ages for subjective comparisons with bilinear interpolation
and WZP. Figure 5 shows a cross section of an edge �taken
from Fig. 1� and reconstructed versions as well as the ab-
solute error of these reconstructions.

It can be seen that directional CS adapts better to edge
orientation and avoids jagged edge �staircase� artifacts.
Overall our results show that the directional CS outper-
forms the competing methods and offers modest but con-
sistent improvements over baseline CS. Additionally, the
proposed scheme offers a reduction in computational com-
plexity relative to conventional CS because only shifts in
the normal to salient edges are required, involving 2k WZP
calculations compared with k2 in the conventional method.

6 Conclusion
A directional variant of the CS methodology was consid-
ered for image resolution upscaling in the wavelet domain.
The proposed method estimates local edge orientation from
a wavelet decomposition of the available LR image and
uses this information to influence CS parameters. Our ex-
perimental results confirm that the proposed method outper-
forms competing methods for a wide range of images both
in objective and subjective terms.

Fig. 4 Extract from original Lena �a� and amplified error images for
4� reconstructions: bilinear interpolation �b�, WZP �c�, and direc-
tional CS �d�.
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