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1 Introduction

Abstract. Being able to acquire, visualize, and analyze 3D time series
(4D data) from living embryos makes it possible to understand com-
plex dynamic movements at early stages of embryonic development.
Despite recent technological breakthroughs in 2D dynamic imaging,
confocal microscopes remain quite slow at capturing optical sections
at successive depths. However, when the studied motion is periodic—
such as for a beating heart—a way to circumvent this problem is to
acquire, successively, sets of 2D +time slice sequences at increasing
depths over at least one time period and later rearrange them to re-
cover a 3D +time sequence. In other imaging modalities at macro-
scopic scales, external gating signals, e.g., an electro-cardiogram,
have been used to achieve proper synchronization. Since gating sig-
nals are either unavailable or cumbersome to acquire in microscopic
organisms, we have developed a procedure to reconstruct volumes
based solely on the information contained in the image sequences.
The central part of the algorithm is a least-squares minimization of an
objective criterion that depends on the similarity between the data
from neighboring depths. Owing to a wavelet-based multiresolution
approach, our method is robust to common confocal microscopy ar-
tifacts. We validate the procedure on both simulated data and in vivo

measurements from living zebrafish embryos. © 2005 society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.2061567]
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quisition of a whole line of pixels and reduces the scanning
dimensionality to one direction. This microscope allows for

Confocal laser scanning microscopy (CLSM) has emerged as
a popular method for high-resolution imaging of fluorescent
labels, particularly in thick or scattering samples. By placing a
pinhole in the conjugate optical plane, before the detector,
out-of-focus light from above and below the focal plane is
rejected from the image, enhancing the axial resolution.' By
collecting images from defined optical slices at successive
depths, the three-dimensional arrangement of fluorescently-
labeled structures can be derived. In traditional point scanning
confocal systems, images are collected in a pixel-by-pixel
manner and acquisition speeds for sequences with frame size
512X 512 pixels are on the order of only a few frames per
second. Recent advances in beam shaping, the availability of
fast CCD line detectors, and the implementation of efficient
hardware for data transmission have made possible the devel-
opment of a fast laser scanning microscope, the LSM 5
LIVE? A blade-shaped beam focused to a line (instead of a
single point for conventional CLSM) permits the parallel ac-
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the acquisition of 2D image sequences (512 X 512 pixels) at
frame rates of up to 120 frames per second. This opens new
avenues for a variety of fields.

In developmental biology, one major goal is to gain a bet-
ter understanding of the mechanisms that influence the devel-
opment of the cardiovascular system. In particular, it is desir-
able to assess the influence of genetic as well as epigenetic
factors such as blood flow, heart wall forces, shear stress,
etc.** While the frame rates of typical confocal microscopes
are suitable to study many dynamic processes occurring in
living systems (e.g., cell migration, division, etc.), cell mo-
tions in the cardiovascular system (e.g., heart-wall motions,
blood flow, etc.) typically occur at several millimeters per
second, 2 to 3 orders of magnitude faster than cell migration.
The significant improvement in frame rate offered by parallel
scanning systems now makes it possible to collect image data
from single optical sections of fast-moving structures. How-
ever, resolving rapid three-dimensional motions in real time
still remains a challenge because it is not currently possible to
scan the z direction as fast as the xy plane.
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Fig. 1 (a) Nongated slice-sequence acquisition procedure. (b) Two 2D slice sequences before and (c) after synchronization.

Other imaging modalities such as magnetic resonance im-
aging (MRI), computerized tomography (CT), or ultrasound
(US) suffer from similar limitations. However, if the imaged
body undergoes the same deformation at regular intervals and
the acquisition is always triggered at a particular phase in the
cycle, it is possible to assemble the data to recover a whole
volume over one full period. For larger organisms (from mice
to humans), it is relatively easy to gate the acquisition with
respect to electrocardiograms (ECG) or respiratory signals—a
technique known as prospective gating or triggering—and re-
construct volumes at a fixed moment in the cycle.s’7 Remain-
ing motion artifacts may then be reduced by the use of various
elastic registration procedures that warp the spatial data.* ' In
cases where gating is not possible or unreliable, nongated
dynamic datasets have been registered by a variety of meth-
ods and for various purposes. For instance, in nuclear medi-
cine, noise reduction may be performed through temporal av-
eraging of nongated signals.11 Thompson and McVeigh have
used the imaging data from flow-encoded MRI to retrospec-
tively perform the gating.I2 Using specific modifications to
conventional MRI pulse sequences, it is also possible to gen-
erate and extract a signal that varies in synchrony with the
cardiac cycle for later reconstruction.> ¢ For CT, various
methods have been developed, either to recover an imaged
volume of the heart in a defined motion state at a single time
point'” or for 4D imaging, by tracking the projection’s center
of mass."® ECG-free algorithms have also been used for US
imaging.'**

In this paper, we present a technique and the associated
image processing that make it possible to reconstruct dynamic
3D volumes of microscopic objects that are periodically mov-
ing, using currently available CLSM technology. We sequen-
tially acquire slice sequences at different depths and reas-
semble them a posteriori to recover dynamic 3D volumes. For
smaller organisms, such as the zebrafish embryos we study,
reliable triggering signals to gate the acquisition are difficult
and cumbersome to acquire. We have therefore devised a
method for postacquisition synchronization based upon infor-
mation within the recorded nongated data itself.

Our synchronization algorithm registers pairs of slice se-
quences with respect to time by minimizing a least-squares
intensity difference criterion. The core element of our method
is thus reminiscent of standard methods for image
registration,21 the latter being a particular instance of the more
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general problem of motion estimation;zz’24 however, the na-
ture of the data requires special adjustments in order to
achieve stable and repeatable results with minimal operator
input. First, since our problem naturally calls for periodic
boundary conditions, we have to (automatically) crop the data
to cover a whole number of periods. Second, the method must
be robust to various acquisition artifacts that are specific to
confocal microscopy.”** Last, the large amount of data that
is involved imposes a subtle balance between memory and
time constraints.

To solve some of the above requirements, our synchroni-
zation algorithms rely on the wavelet transform for robustness
and rapid execution. For similar purposes, various authors
have taken advantage of the favorable wavelet properties to
implement affine and elastic registration algorithms of 2D or
3D datasets,”° although their methods are not directly re-
lated to ours.

The paper is organized as follows. In Sec. 2, we discuss the
measurement process as well as the requirements and limita-
tions of the method. In Sec. 3, we present the synchronization
algorithm, along with the tools that are required for period
determination and noise reduction. In Sec. 4, we present two
experiments, one based on a simulated acquisition procedure
and the second, based on experimental in vivo measurements.
Finally, we discuss the method’s overall performance and
limitations as well as further developments.

2 Measurement
2.1 Measurement Strategy

We image a slice of a 3D object, subject to periodic motions
and deformations over typically two to four periods. We as-
sume that the object is given by the local intensity I(x,z,7)
€[0,1,x], with x=(x,y) and that the periodic deformations
are such that at any fixed spatial position (X,z) we have

[1(x,2,1) = I(X,2,t + T)| < Loy (1)

where T is the deformation period. Between acquisitions, the
object is moved axially (z direction) to be sequentially imaged
in its entirety (see Fig. 1). Because the acquisition is triggered
at a random moment in the heart cycle, the different se-
quences are not synchronized. The measured intensity can be
modeled by
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Fig. 2 Dispersion measure for period estimation. (a) Sampled intensity
variation over time (with unknown period T) at one location x. (b) For
a candidate period T; the samples are brought back to the first period
(phase locking). The dispersion of the samples is given by the length
of the curve that joins the newly ordered samples (bold curve). (c)
When the candidate period corresponds to the actual period, i.e.,
T,=T, the dispersion of the samples, hence the length of this curve, is
minimized.

Im(x,zk,t)=f ffl(x’,z,t—sk)PSF(x—x’, 7 —z)dx’'dz
()

where the s; are the unknown time shifts (defined modulo the
period) at each measured depth z;=kh, k=0, ... ,N,—1, with
h the axial slice spacing. The ideal point spread function
(PSF) can be expressed by the Dirac delta function

PSF(x,z) = 8(x)8(z). (3)

In practice, the sampling is not ideal and we assume that the
PSF has a spatial extent in the z direction that is larger than
the axial slice spacing 4.

The subsequent algorithms aim at finding the unknown
sequence sy in order to retrieve the original volume I(x,z,1)
from the measurements 1,,(X,z, 7).

2.2 Synchronization

The core of the synchronization procedure rests on the regis-
tration of slice-sequence pairs with respect to time. We seek
solutions that, for a given time shift, maximize the similarity
(in some metric to be defined) between two adjacent slices.
This similarity hypothesis is reasonable if the axial sampling
step h (the distance between two adjacent slices) is smaller
than the PSF extent in z or that the object undergoes suffi-
ciently smooth and homogeneous deformations. Indeed, while
the axial resolution drops as the axial extent of the PSF in-
creases, the similarity between two adjacent slices improves
as both measurements contain information from the same
physical region. For the same slice spacing, ideal sampling
induces better axial resolution, to the detriment of the similar-
ity hypothesis. While a rigorous investigation about all pos-
sible motions that may or may not be imaged using this tech-
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Fig. 3 Synchronization based on wavelet coefficients. (a) Original
slice sequence at a given depth. (b) A 2D wavelet transform is applied
to each frame. (c) Fine-scale wavelet coefficients are discarded (data
reduction) as well as the low-pass coefficients at the coarsest scale. A
threshold is applied to the remaining coefficients to increase robust-
ness to noise. The reduced data is interpolated to increase synchroni-
zation accuracy.

nique is beyond the scope of this paper, we have heuristically
determined that a unique and correct dynamic object can be
recovered in the case of periodic, continuous, and homoge-
neous transforms even in the unfavorable case of ideal sam-
pling. In Sec. 4.1, we present a simulation that supports this
observation. Deformations that are nonhomogeneous with re-
spect to the z axis may result in incorrect reconstructions
when the axial slice spacing & is too large, that is, larger than
the axial extent of the PSE. In practice, such cases may only
be dealt with by considering a region of interest where the
deformation is known to be homogeneous (see Sec. 4.1) or by
the use of external information (ECG, etc.).

3 Algorithms

In this section we present the synchronization methodology.
The following steps are involved in the data processing:
1. period determination, data interpolation, and cropping,
2. determination of relative shifts between pairs of slices,
3. determination of the slices’ absolute shifts with respect
to the first slice,
4. synchronization and postprocessing.

3.1 Period Determination

In order to ensure proper synchronization, the heartbeat pe-
riod must be known precisely and be the same for all slice
sequences at different depths. The image sequences are ac-
quired at times 7;=ih,, i=0,...,N,— 1, where h, is the acqui-
sition sampling step and N is the number of acquired frames.
We achieved precise and automatic period determination by
use of a technique inspired from 21str0n0my.37‘38 For a given
slice sequence and a candidate period 7", the time positions of
every pixel are brought back to the first period (phase locking)

7 =7 — /T |T (4)

and a bijective mapping i:i(j) [respectively j=j(i)] is de-
fined such that T S 7' <7,,,. An estimate of the phase-
locked signal’s dlspersmn is glven by the length of the graph
(7} L%, 24, iy j0....v -1 that joins the newly ordered
samples on a normalized time scale (see Fig. 2), cumulated
over the whole image, i.e.,
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Fig. 4 Five time points of a simulated heart-tube deformation cycle (homogeneous transform). The corresponding movie is available at Ref. 62.

N1

D(Zk, T,) = E 2 {|Im[Xm>Zk’ Tl(])] - Im[xm’zkv 7-i(j—l):Hz
meZz? Jj=1
+|7) -7 TRy, (5)

with Xy, =mbh,,. Here, for simplicity, we consider that the
sampling step in the Oxy plane, h,,, is 1. The correct period
T(z;) is found by minimizing the above expression, viz.,

T(z;) = arg min D(z;, T"). (6)
Tf

Starting from an initial guess of the range T(z;)
€ [Timin> TrmaxJ» We solve Eq. (6) iteratively using a combined
parabolic and golden section search algorithm,”’41 which
usually converges to a subsampling-step accuracy in less than
10 iterations.

In order for the periodic boundary conditions in the time
direction to be applied during subsequent operations, we crop
and resample the data to cover an integer number of periods.
We used linear spline interpolation, which offers a fair com-
promise between the accuracy of higher order interpolation
schemes and the time efficiency of nearest neighbor
interpolation.”*** The samples are taken at times t;=ih,, i
=0,...,N,—1, with sampling step h,=L/N;, where N, is the
number of considered frames over the total time L=N;T and
N7 the number of considered periods. This also allows for
temporal stretching or compression in cases where the periods
at different depths are not the same. From this point onward,
we consider that the measured signal 1,,(x,z;,) is known for
xeR? and te[0,L) (possibly via the interpolation of
samples that are uniformly distributed over that domain) and
that periodic boundary conditions in time apply.

3.2 Determination of Relative Shifts

Our automatic synchronization algorithm is based on the
minimization of an objective criterion to measure the similar-
ity between the data from neighboring depths z; and z;,. We
have chosen a least-squares criterion that has been shown to
be effective for registration algorithms44

L
Qk,k’(s) = ff f |Im(X’Zk’t) - Iln(X’Zk’7t - S)|2dth (7)
R2Jo

where the shift s € R. We can further write
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L
Qk,kl(s):ff J |Im(X,Zk,t)|2+|Im(X,Zkr,t—S)|2dth
2Jo

L
_2jf f Im(X,Zk,t)Im(X,Zk/,t—S)dtdx
R?2Jo

L
=C-2 ff J L,(X,z;,0)1,(X, 240, — s)drdx,
R2Jo

(8)

where the integral of the second quadratic term does not de-
pend on s because of the periodicity with respect to time.
Since the above expression has the form of a correlation and
periodic boundary conditions apply, we can compute Oy ;(s)
(up to the constant C) for a number of regularly spaced shifts
s=ih,, with h,=L/N,, i=0,...,N,—1, at a limited cost using
the fast Fourier transform (FFT). The relative shifts s be-
tween any two pairs of z slices are obtained by finding the
shifts s that minimizes Qy ;/(s). They may be represented by
the antisymmetric matrix S, whose elements are

Skk = arg min N Qk’kr(s). (9)

s=kT,k=1,...,

Note that this matrix not only includes slice-sequence pairs
that are immediate neighbors but also pairs that lie farther
apart. We also compute the correlation for such slices in order
to reduce synchronization errors that may quickly propagate
due to the sequential alignment and the limited discrete steps
the FFT imposes.

Before we derive the method for the determination of the
shifts relative to the first slice sequence (absolute shifts), we
refine the above correlation technique to make it time and
memory effective as well as robust. Indeed, computing Egs.
(8) and (5) naively would require considerable time and
memory resources as the multidimensional data rapidly ex-
ceeds the storage capacity of even the latest available desktop
computers. Another concern that complicates the equations’
direct implementation is that the images are corrupted by
noise. As a consequence, the objective functions are as well.
Yet another caveat is the presence of features that are charac-
teristic of the studied structure but do not comply with the
similarity hypothesis. For example, red blood cells are con-
fined to the inside of the heart tube and have a movement that
is in synchrony with the heart movement, however, the indi-
vidual cells do not occupy the same positions from slice to
slice. The correct extremum determination is thus severely
affected. We have chosen to take advantage of the
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Fig. 5 Bright-field images of a zebrafish embryo at 48 h.p.f.; h
=heart; e=eye; mb=midbrain; ot=otocyst; yolk=yolk mass; A
=atrium; V=ventricle.

. .4 . . 464 .
multiresolution*> and noise decorrelation*®*’ properties that

the wavelet decomposition offers to solve these issues.
We consider a separable orthogonal wavelet basis of
Ly(R?),

{l//]I',m(X)’ wﬁm(x)7 lﬁzm(x)}jel,melz (10)

where the two-dimensional wavelets

eb,‘?m(x)=$wp(§—m) (11)

are constructed with separable products of the 1D scaling
function ¢(x) and wavelet (x)

P (%) = YY), P2(x) = P(x) d0), ¥ (xX) = Yl h(y).
(12)

For the sake of brevity, we index the basis functions with a
single index k that includes the scale j € Z, translation m
e 72, and wavelet type p € {1,2,3}:

Ir//k(x) = ¢£m(x)’ k = (P’j,m) . (13)

With this notation, we may expand an image at a fixed depth
z; and time point ¢ in the wavelet basis as

L%, 200 = 2 con(D) th(x) (14)
k

where the coefficients are given by the inner products (wave-
let transform)

cex(t) =L+, 2101), o) (15)

=ff[m(x,zk,t)¢k(x)dx. (16)

Since the basis functions are orthogonal, i.e., (¢, i)
=8 x> We may rewrite Eq. (8) as
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Fig. 6 Experimental correlation curve [see Eq. (8)] for two adjacent
slice sequences. The maximum correlation occurs for a shift of 259
frames.

L
Ouw(jh)=C-2 E crx(epr g (2= jhy)dt
0 k
N1
~C=2h2 2 ceilib)ep i li=h]. (17)
k =0

In practice, we only consider a finite number of scales and
translations for k (because of the finite resolution and support
of the image, and appropriate boundary conditions). Further-
more, we discard the fine resolution coefficients thus down-
sizing the data’s complexity to a tractable size (see Fig. 3).
Since wavelet transforms induce concise signal representa-
tions we make sure that the most important information is still
present. Also, at coarse scales, individual blood cells are not
resolved. Since they are confined to the inside of the heart
tube, their global position contributes to a useful correlation
signal. However, since confocal images are subject to bleach-
ing (whose consequence is the presence of a nonuniform
background), we discard the low-pass coefficients (that con-
tain most of the background energy) as well. We then apply a
soft threshold to the remaining coefficients to limit the influ-
ence of other noise sources.

Similarly, we may apply Eq. (5) to the reduced data set of
wavelet coefficients instead of the sampled image pixels, i.e.,

N1

D(z,T) =2 2 {lexwl 7] = crnl TGP

k j=1
+| 7l — 7 T, (18)

thus gaining robustness, reducing the required memory, and
decreasing the computation time. Although Egs. (5) and (18)
are not formally equivalent, the latter may be compared to
applying the former to a sequence of images whose main
features (edges) have been enhanced. Indeed, the wavelet
transform essentially acts as an oriented differential operator
at multiple scales.

We did not notice significant differences in the overall be-
havior of the algorithm depending on the choice of the wave-
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let basis, which must, however, be orthogonal to ensure va-
lidity of Eq. (17). We chose to work with the Daubechies 9/7
wavelets.*® Although they are not orthogonal (but nearly49),
they have good approximation properties and are symmetric.
The latter property allows the implementation of an algorithm
which does not require that the image size be a multiple of a
power of two™ and which is thus well suited for region-of-
interest processing.

Finally, to increase the synchronization accuracy, we lin-
early interpolate the processed wavelet coefficients with re-
spect to time in order to obtain a finer time step when com-
puting Eq. (17). This interpolation is fast since the amount of
data is reduced.

3.3 Absolute Shifts Determination

To determine the slice-sequence shifts with respect to the up-
permost sequence (absolute shifts) s;, we consider their rela-
tion to the relative shifts sy

Sl=0

Sk=Spr =Sk k's with k,k’=l,...,Nz and k <k'. (19)

Since slice-sequence pairs that are separated by a larger depth
are less trustworthy, we assign different weights wy/_y to
equations that involve the estimated shifts s ;» depending on
the distance j=|k’—k|. We set lower weights w ; to equations
for slice pairs less likely to exhibit similarities, that is, when
the distance |k’—k| between them increases. For a system
with N=5 and w;=0 for j>2, we can rewrite Eq. (19) in
matrix form

1 0 0 0 O 0

1-1 0 0 0 51,2
51

0 1 -1 0 0 52,3
52

0 0 1-1 0 S34
S3 =

0 0 0 1 -1 84,5
54

1 0 -1 0 0 81,3
55

0 1 0 -1 0 N — 894
t

0 0 1 0 -1 535

A s (20)

along with the diagonal weighting matrix

W=diag(I,Wl,Wl,Wl,Wl,Wz,Wz,Wz). (21)

We determine the weighted least-squares solution of Eq. (20),
which is equivalent to solving

ATWIWAt=A'W'Ws (22)

where (-)" denotes transposition. Equation (20) may easily be
modified to include supplementary information (not image-
intrinsic) that may become available in the future, such as
ECGs. Depending on the accuracy of the signals, we may then
set appropriate weights in Eq. (21).

Journal of Biomedical Optics

054001-6

3.4 Synchronization and Postprocessing

The original slice sequences are finally circularly shifted by
the computed absolute shifts (using linear interpolation and
resampling). The synchronized data may then be visualized
using 4D-capable software packages‘5 ! Noise reduction steps
may be applied. We made use of a rolling-ball background
removal algorithm (see Refs. 52 and 53) to normalize the
background. The 4D data series may also be analyzed to fol-
low individual cell movements. The higher dimensionality of
the data should also make it possible to take advantage of
more sophisticated noise removal algorithms that have proven
to be effective for other high-dimensional modalities.”* Fi-
nally, the synchronized data might be suitable for subsequent
deconvolution.

4 Results and Discussion

4.1 Simulation

We validate our approach by simulating the acquisition pro-
cedure on a periodically deformed test body. We have consid-
ered the following, much simplified, heart-tube phantom. At

time =0, the contributing intensity at every location (x,z) is
given by

(o +y%) - ro(Z))
wl4

X[1+ ycosRafx)cos(2mf y)cos(2mf z)]

(23)

[(X,Z,O) = 10ﬂ3(

where the central wall radius is given by

ro(t,z) = Ry + Ag sin(2mraz) (24)

and where w is the wall thickness, « controls the tube’s ge-
ometry, R, is the average tube radius, Ay is the radius move-
ment amplitude, vy is the amplitude of a regular pattern of
frequency f,;, and the cubic B-spline® is given by

213 = |x*+|x12, 0sx|<1
B(x)=92-|x])e, I<x<2 (25)
0, 2 < |x].
Typical heart motions include rotation, expansion, contrac-
tion, and shear.’’ We model the intensity at subsequent times
by a general periodic affine transformation of the coordinate
system corresponding to an homogeneous deformation of the

original body. The intensity at position (x,y,z) and time ? is
given by

I(x,z,1) =I1(x',z,0) (26)
where, using homogeneous coordinates,
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(b)

100 um
—

Fig. 7 Reconstructed 4D datasets of beating 48 h.p.f. Tg(gatal:: GFP) zebrafish hearts. In the first frame, the red blood cells fill the atrium. In the
following frames, the red blood cells are pumped through the atrial ventricular canal into the ventricle. The atrium fills again while the cycle is

completed. The grid spacing is 20 um. Movies are available at Ref. 62.

x! ay(t) ap(t) apt) ayu) X

y' _ ax (1) an(t) ax(t) aylt) y 27)
4 az (1) axn(t) ass(t) as(t) z |

1 0 0 0 1 1

The time-periodic affine transformation matrix A(z) can be
decomposed as a combination of translation, rotation, scaling,
and shear:

A()=T()-R(r) - H(r) - C(2) (28)

where T(f), R(z), H(z), and C(¢) are the matrices correspond-
ing to the respective transformations. Twelve parameters con-
trol the deformation matrix and each of them is a periodic
function of time, which we specify through the coefficients of
its Fourier series (see Appendix A). The latter may be chosen
randomly to cover the full range of possible transformations.
In Fig. 4, we show several time points of such a random,
periodic, and continuous deformation cycle that includes
shear, rotation, translation, and scaling.

To assess the performance of our method, we generated a
set of 100 deformation cycles using at each time different
(normally distributed) random variables for the second and
third harmonics of each parameter function, as well as random
shifts 5, ~Un(=7,T) (uniform probability distribution). We
considered the simplified PSF of Eq. (3) with N,=20, N,
=40, h,=1 (normalized time units), and a period T=19.5.
From these simulated measurements, we then applied our al-
gorithm (using 80 time points to compute the correlations,
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that is, after the cropping step, approximately 2X oversam-
pling) to retrieve the shifts s;. Since the true absolute shifts
were known, we could compute the absolute error using the
following formula (which takes into account periodicity, e.g.,
comparing shifts s;=35 and s,=T- & yields an error €=25):

€= m1n(|WT(s_k) - WT(Sk)|,T— |WT(§I<) - WT(sk)D (29)

where Wy(x)=x—|x/T|T. The mean error over the 100 ex-
periments was €=0.31+0.08 frames. This result confirms that
for the vast class of periodic homogeneous transforms our
method is highly reliable, even when the considered sampling
is ideal, i.e., when there is no axial overlap of the PSF. The
error may be reduced by linearly interpolating the wavelet
coefficients at a finer sampling rate in time. For different over-
sampling rates, we obtained the following errors: €x
=0.41+0.12, €« =€=0.31%£0.08, €,x=0.27+0.06, and €x
=0.25+0.06. However, visual inspection of the reconstruc-
tions from in vivo measurements showed no significant im-
provement of the results above 2X oversampling. Also, al-
though the accuracy of correlation-based registration methods
is known to be inherently limited,59 in practice, the current
limiting factors are the irregularities in the heartbeat period-
icity of the biological samples themselves.

4.2 Experimental Measurements

With the aim of a better understanding of the zebrafish cardiac
development, we applied our method to slice sequences from
an early embryonic, 48 hours post fertilization (h.p.f.), beat-
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ing heart. In Fig. 5, we show a bright-field microscopy image
of a 48 h.p.f. zebrafish embryo where the heart position has
been indicated. The study focuses on zebrafish for several
reasons: they are vertebrates that reproduce externally and
rapidly, they are relatively transparent, and it is possible to
genetically engineer fish strains that express vital fluorescent
markers in specific tissues (for instance, heart wall, or blood
cells). Here, we have chosen to study Tg(gatal ::GFP) ze-
brafish embryos whose endo- and myocardial cells as well as
erythrocytes are fluorescent.”’ The embryos were anesthetized
in order to limit the imaged movements to those of the heart.
Images were acquired using a Zeiss LSM 5 LIVE laser scan-
ning microscope prototype” at a frame rate of 151 Hz for the
duration of three to four heartbeats. The images had 256
X 256 pixels and a sampling step of 0.9 uwm per pixel (40
X AchroPlan water-immersion lens NA=0.8). The stage was
then moved axially in increments of 5 um before a new se-
quence was acquired. A total of about 20 positions could be
imaged per embryo. A complete description of the experimen-
tal aspects of the measurement procedure is reported
elsewhere.’

The heartbeat of the studied zebrafish appeared to remain
steady over the usual acquisition time for one slice (three to
four heartbeats). However, we observed changes in the rate of
up to about 10% between the sequence at the first and last z
position. Once identified, these variations—mainly due to am-
bient temperature changes—could subsequently be controlled
to limit the period change. We considered three periods per
slice sequence. In Fig. 6, we show the experimental correla-
tion curve for one slice-sequence pair. The curve’s three main
maxima correspond to admissible periodic shifts (one peak
shift per imaged heartbeat).

In Fig. 7, we show the rendering over five frames of two
reconstructed embryo hearts. Mostly erythrocytes, but also
endo- and myocardial cells are fluorescent and visible. The
orientation with respect to the z axis is different for the two
samples, yet the reconstructions show similar features, which
supports the hypothesis that the method is suitable for accu-
rate imaging of the wall deformations. These reconstructed
images allow the visualization of complex flow and wall
movement patterns that previously could not be studied.

The computation time on a 2-GHz PowerPC G35, for a set
of 20 slice sequences of size 256 X 256 pixels and 220 time
frames, is distributed as follows: preprocessing (wavelet
transform): 1 min; period retrieval: 10 s; time interpolation,
resampling of wavelet coefficients, and FFT: 7 s; shift deter-
mination: 7 s (absolute shift determination takes less than
0.01 s); original data shifting, interpolation, and sampling:
40 s. Finally, our implementation’s memory requirements
(RAM) are below 512 MB for the above dataset.

5 Conclusion

We have presented a procedure for the synchronization of
nongated confocal slice sequences to build dynamic 3D vol-
umes. We have investigated the ability of our method to
achieve this goal and found that it performs well. We have
validated the approach both through simulation and in vivo
measurements. The described algorithms appear to be robust
and lead to coherent results. Provisions are made in the
method for the subsequent inclusion of a priori data to relieve
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the current requirements on the movements that can be stud-
ied with this technique.
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Appendix: Periodic Affine Transformations

The transformation matrix in Eq. (28) can be decomposed
using the following matrices for scaling

Sty O 0 o0
0o s, 0 0
o=\, )ét) s o] (D)
0 0 0 1
translation
1 00 T4
010T,
TO=14 o 1 ?23 ’ (A2)
000 1
shear
1 S,(1) S 0
0 1 S, 0
H(r) = 0 o N E (A3)
0 0 0 1
and rotation
cos[y(r)] sin[¢2)] O O
R() = —sin([)c,b(t)] sin[(c,)b(t)] (1) 8 (Ad)
0 0 0 1
1 0 0 0
0 cos[Hr)] sin[Hr)] O
0 —sin[3Hz)] sin[Hr)] O (A5)
0 0 0 1
cos[#(t)] sin[¢(r)] 0 O
—sin[¢(1)] sin[¢(r)] 0 0 , (A6)
0 0 10
0 0 01

where the twelve coefficients

0(t)=[6,(1), ..., 0,,(1)]
=[ (1), 9(1), Y1),
S,(1),8,(1),5 (1),
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Sxy(t)’ sz(t)sSyz(t)v

T(0).T,(1),T(1)] (A7)

are periodic functions that can conveniently be expressed by
their Fourier series

[ ©

6,(t) = ap; + 2, ay; cos[2m(kIT)t] + >, by, sin[2a(k/T)t]

k=1 k=1

i=1,...,12. (A8)
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