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Abstract. A kernel-based metric measuring tracking reliabil-
ity that is based on discriminative components of a kernel
target model and kernel mutual information is presented.
The discriminative components of the kernel target model
are selected by computing the log-likelihood ratios of class-
conditional sample densities of these components from a
target region and background sampled region. The compo-
nents selection process is embedded in a metric with kernel
mutual information of the target regions of the initial frame
and current frame in video infrared target tracking for online
evaluation of the tracking reliability. Experimental results
have shown that the metric can effectively characterize tar-
get tracking results as good or bad. © 2006 Society of Photo-
Optical Instrumentation Engineers.
�DOI: 10.1117/1.2207810�
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1 Introduction

Tracking reliability evaluation of a tracking algorithm is an
important issue because it can guide the design of a good
tracker. A variety of algorithms for measuring reliability are
presented to improve the robustness of the tracking
process.1–4 Several feature-points-based metrics are pro-
posed in Ref. 1 for analysis of partial and total occlusion in
video tracking. Erdem et al. introduced other metrics based
on the color and motion differences.2 However, these
feature-points and color-based metrics are not fit for evalu-
ating the tracking performance of video infrared target
tracking because the extracted feature points and color in-
formation of the target region are not reliable in infrared
images. The infrared sequences are extremely noisy due to
rampant systemic noise or color noise sources incurred by
the sensing instrument and the noise from the
environment.5 The aim of this letter is to design a proper
metric to evaluate the performance quantitatively of infra-
red target tracking while utilizing the intensity values infor-
mation discriminatively and avoiding extracting the feature
points of the target region with a kernel-based method.
0091-3286/2006/$22.00 © 2006 SPIE =
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kernel-based target tracking approach, such as mean shift
lgorithm,6 is a commonly used method in the tracking
eld. Let �xi�i=1. . .n be the normalized pixel locations in the

arget region with center c in the current frame. The func-
ion b :R2→ �1. . .m� �m-bin histogram is used� associates to
he pixel at location xi the index b�xi� of its bin in the
uantized feature space. The kernel density estimation of
he feature u=1. . .m in the target region is computed as6

u = C�
i=1

n

k�� xi − c

h
�2��	b�xi� − u
 , �1�

here � is the Kronecker delta function, C is the normal-
zation constant, k�•� is the common profile used in corre-
ponding feature domain, and h is the kernel bandwidth.
hus we have the target model

= �qu�u=1. . .m, �
u=1

m

qu = 1. �2�

e can obtain the target candidates in the same way, and
he target location in the current frame can be obtained by
ptimizing the similarity function of the target model and
arget candidates.

It is unavoidable that some background parts exist in the
ocated target region when we don’t use a contour-based
ethod in which tracking is achieved by evolving the con-

our frame to frame.7 To evaluate the tracking performance,
e seek discriminative components of the tracking model.
he selected components of the tracking model are the
omponents that can best describe the tracked target. A rect-
ngular set of pixels covering the target is chosen to repre-
ent the target pixels, and an outer surrounding ring set of
ixels is chosen to form the sampled background. Given a
ertain feature u, let qu and ou be kernel density estimation
alues of feature u for pixels in the target region and back-
round sample, respectively. The log-likelihood ratio of the
eature u is given by8

�u� = log
max�qu,��
max�ou,��

, u = 1 . . . m , �3�

here � is a small value �we set it to 0.001� that prevents
ividing by zero or taking the log of zero. Based on the
og-likelihood ratio, we select the components qu of the
racking model when

ig. 1 Ship target in the sea-sky background: �a� initial frame; �b�
orrect location, Ek=1; �c� only part of the target is located, Ek

0.843; �d� target missing, Ek=0.
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L�u� � � , �4�

where � is a threshold determined by our prior knowledge
of the target. From Eq. �4�, we know that the selected com-
ponents are the components that can best describe a target.
This is because high values of L�u� denote a higher kernel
density of feature u than that of the sampled background,
and the pixels of feature u in the target region are thus parts
of the real target. In order to strengthen the selection pro-
cess, a background-weighted method of the kernel density
estimation of the target region is also used.6 Therefore, a
cost function Sk is defined to embody the lost information
of the selected discriminative components of the initial tar-
get region during the tracking process:

Sk =
N − Nk

N
, �5�

where N is the number of pixels in the target region that
construct the selected components in the initial frame and
Nk is the number of pixels in the target region that construct
these components in frame k. Large values of Sk are an
indication of the information decrease of the selected com-
ponents of the initial target model.

Fig. 2 Plane sequence and its different located target regions: �a�
frame 8, Ek=0.935; �b� frame 18, Ek=0.362; �c� frame 32, Ek
=0.562; �d� frame 70, Ek=0.904; �e� frame 81, Ek=0.634; �f� frame
95, Ek=0.245.

Fig. 3 Values of kernel-based metric against frame number for ship

tsequence.
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For two discrete valued random vectors X and Y with
arginal probability mass function p�x� , p�y� and joint

robability function p�x ,y�, the mutual information be-
ween them is defined as

�X,Y� = �
x

�
y

p�x,y�log
p�x,y�

p�x�p�y�
. �6�

iven the kernel density estimations qu of feature u and qv
f feature v of the initial and current target region, respec-
ively, the marginal probability mass functions p�u� and
�v� are given by

�u� = qu, p�v� = qv, �7�

here u and v are the feature values in the quantized fea-
ure space. The joint probability p�u ,v� between the two
ernel density estimations is calculated as

�u,v� = p�u�p�v�u� , �8�

here p�v �u� is a conditional probability of v while observ-
ng u. We place a one-dimensional kernel centered on u and
ernel values are used as p�v �u�. For example, conditional
robability p�v �u� with a Gaussian kernel is given by

�v�u� =
1

�2��
exp �u − v�2

2�2 � , �9�

here � is the standard deviation of the Gaussian kernel.
ere, we define kernel mutual information as

�U,V� = �
u=1

m

�
v=1

m

p�u,v�log
p�u,v�

p�u�p�v�
. �10�

herefore, a cost function Mk is defined based on kernel
utual information to evaluate how much information of

ig. 4 Values of kernel-based metric and cost functions against
rame number for plane sequence.
he initial target region holds in frame k and it is given by

June 2006/Vol. 45�6�
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Mk =
I�U,V�

max�H1,H2�
, �11�

where H1 and H2 are the entropies of the target regions of
the initial frame and current frame, respectively, in the
quantized feature space, which are given by

H1 = �
u=1

m

p�u�log u , H2 = �
u=1

m

p�v�log v , �12�

where max�H1 ,H2� is the maximum information entropy
value of the two compared entropies. Because p�u� and
p�v� are the marginal probability mass functions,
max�H1 ,H2� is also the maximum of the kernel mutual in-
formation. So,

0 � Mk � 1. �13�

A single metric can be obtained to evaluate the tracking
performance by combining the information of the discrimi-
native components of the kernel target model in frame k
and kernel mutual information cost function defined above
as follows:

Ek = c1��Sk + Mk + c2� , �14�

where the constants c1 ,�, and c2 are chosen to satisfy

0 � Ek � 1. �15�

In our work, the constants c1 ,�, and c2 are chosen in the
same way as the feature-points-based mutual information
metric presented in Ref. 1, that is, c1=0.5, �=−1, c2=1.
This means that when the tracked target is lost �Sk=1,Mk

=0�, Ek achieves the minimum value 0 while the target is
entirely accurate located �Sk=0,Mk=1�, Ek achieves the
maximum value 1. The kernel-based metric Ek is a measure
of the tracking performance of a tracking process. A large
value of Ek represents a good tracking performance and
reliable tracker output in the current frame.

3 Experimental Results

Different tracked regions of a standard mean shift tracker6

of a 400-frame infrared ship sequence �the size of each
frame is 128	128 pixels� and a 100-frame infrared plane
sequence �the size of each frame is 160	120 pixels� are
evaluated by the kernel-based metric. The intensity space is
taken as a feature space and it is quantized into 64 bins. We
implement the tracking algorithm with the metric output in
VC+ +6.0 on a Pentium 4 platform and the current imple-
mentation of the tracking algorithm with the metric output
is capable of tracking at 15 and 17 frames/s of the ship
sequence and plane sequence, respectively. The kernel-
based metric is adopted properly in this situation to evalu-
ate the tracking process after a top-hat transform prepro-
cessing in the target region. Some representative frames
from these sequences are shown in Figs. 1 and 2, respec-
tively. The rectangle shown in the infrared image indicates
the located target region. The outputs of the metric of dif-
ferent located target regions represent quantitatively the
amount of information of the selected target that the tracker
can capture in different frames. The variations of the track-
Optical Engineering 060505-3
ng performance denoted by the proposed metric for vari-
us image frames in different sequences are also shown in
igs. 3 and 4.

The variable parameters c1 ,�, and c2 in Eq. �14� are
hosen to satisfy the requirement 0�Ek�1 and their val-
es are kept constant throughout the experiments. From
ig. 4, we find that the variation of the cost function Mk is
lmost the same as that of the proposed metric and the cost
unction Sk has a similar curve to them but with reverse
ariation because it evaluates the lost information of the
elected components of the initial target model during the
racking process. In fact, we can treat the cost functions
dentically by assigning the variable parameters as c1
0.5,�=−1, and c2=1 in most cases. Notice that for abrupt
ppearance changes �for example, the size of the tracked
arget will abruptly increase when one target across an-
ther�, the metric will be ineffective because the tracker
utput is not reliable in this situation. Since such abrupt
hanges are transient, the metric works effectively again
fter that. As we know, a robust tracker with a proper
odel update method is less sensitive to the appearance

hanges and can track the target even though the tracked
arget model is largely different than the initial target
odel. Here, N in Eq. �5� andH1 in Eq. �11�, which are

omputed from the target region of the initial frame, are
lso updated when a model update method is implemented.

Conclusions

his paper has presented a kernel-based metric to evaluate
he reliability of the tracking process. The metric is con-
tructed with a kernel method by embodying the informa-
ion flow of the selected discriminative components of the
ernel target model and kernel mutual information of the
arget regions of the initial frame and current frame. Future
esearch will attempt to design a more suitable kernel target
odel to complement the kernel-based metric.
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