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Abstract. Raman spectroscopy on single, living epithelial cells cap-
tured in a laser trap is shown to have diagnostic power over colorectal
cancer. This new single-cell technology comprises three major com-
ponents: primary culture processing of human tissue samples to pro-
duce single-cell suspensions, Raman detection on singly trapped cells,
and diagnoses of the cells by artificial neural network classifications. It
is compared with DNA flow cytometry for similarities and differences.
Its advantages over tissue Raman spectroscopy are also discussed. In
the actual construction of a diagnostic model for colorectal cancer,
real patient data were taken to generate a training set of 320 Raman
spectra and a test set of 80. By incorporating outlier corrections to a
conventional binary neural classifier, our network accomplished sig-
nificantly better predictions than logistic regressions, with sensitivity
improved from 77.5% to 86.3% and specificity improved from 81.3%
to 86.3% for the training set and moderate improvements for the test
set. Most important, the network approach enables a sensitivity map
analysis to quantitate the relevance of each Raman band to the
normal-to-cancer transform at the cell level. Our technique has direct
clinic applications for diagnosing cancers and basic science potential
in the study of cell dynamics of carcinogenesis. © 2007 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.2748060�
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Introduction

ecently, laser tweezers and Raman spectroscopy �LTRS�
ere combined to diagnose single living human cells confined

n a laser trap.1,2 Both solid tumors surgically removed from
uman colorectal cancer sites1 and human lymphocytes2 were
nvestigated. In the first case, primary culture protocols were
ollowed to detach the cancer cells from their surroundings,1,3

hile in the second case, the healthy and transformed lym-
hocytes were already in single-cell form.

In contrast, DNA flow cytometry �FCM� is a currently
dopted medical procedure to evaluate the malignancy of a
umor,4 in which single-cell suspensions are prepared, stained
ith a DNA-binding fluorophore, and analyzed by a flow cy-

ometer. LTRS and DNA FCM carry several similarities. First,
oth are single-cell techniques, in which the cells are analyzed
ne by one; second, both share the same procedure for sample
reparation �up to the staining�; and third, in both cases, the
ells are detected in an aqueous environment involving laser
xcitation and optical detection.

DNA FCM relies on ploidy information, such as irregulari-
ies of DNA contents, extra chromosomes, and increased per-
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centage of S-phase cells undergoing DNA replication, to
quantitate the aggressiveness of cancer. Thus, it cannot reveal
the cell structural changes or the biochemical variations asso-
ciated with the normal-to-cancer transition. Furthermore, a
DNA FCM analysis typically requires 20,000 single cells in
order to accumulate enough statistical significance5; therefore,
such tests are unavailable to small amount samples from ex-
foliative cytology or biopsies on small tumors. Last, the ac-
curacy of DNA FCM tests tends to fluctuate on several fac-
tors. A procedural guideline has been created to ensure quality
control and reproducibility of the test results among different
laboratories.5 According to the guideline, adequate neoplastic
material in a specimen should be ensured �by other means�
before a test can be invoked in order to justify the accuracy.
For example, at least 20% tumor cells are necessary if tumor
proliferation calculations are needed. Further, accidental mix-
ing with normal tissues can deviate or may even invalidate the
test results. The statistical nature of FCM �including conven-
tional FCM� ensures that it is an ensemble averaging tech-
nique.

On the other hand, LTRS has several characteristics un-
available to DNA FCM. First, LTRS allows single living cells
to be directly investigated without any staining, free of the
artifacts introduced by the staining process. FCM is essen-
1083-3668/2007/12�3�/034002/9/$25.00 © 2007 SPIE
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ially a serial method with low efficiency of information, and
ifficulty in multicolor labeling prevents the simultaneous de-
ection of multiple targets on the same cell, whereas LTRS
ollects the information about the whole biochemical compo-
ition of a cell and reports the contributions of vast chemical
unction groups in parallel. The abundance of information
akes LTRS a true single-cell diagnosis technique, in which

he decision is made on each cell, not the ensemble average
ver 20,000 cells. For the diagnosis of a patient, 20 cells are
ufficient for an LTRS test.1 Therefore, small tumor biopsy,
xfoliative cytology, and scrape and brush cytology can all be
mployed to collect materials enough for an LTRS run. Nev-
rtheless, DNA FCM and LTRS are both achievements of
aser technologies, and each has its own merits and should be
sed to supplement each other to assist doctors in the fight
gainst cancers.

For two decades, Raman spectroscopy has demonstrated
iagnostic power over many diseases, from various
ancers,6–9 to atherosclerosis,10 to Alzheimer’s disease,11 etc.
n the area of cancer studies, great efforts have been taken to
btain the Raman features of lesions from breasts,6,7

ladders,8 skins,9 etc. Sophisticated diagnostic algorithms
ave been developed to differentiate, classify, and stage tu-
ors. Over the years, progress in data collection schemes and

pectral analysis methods has achieved high accuracy and
ushed the detection limit to early stages.

As is well known, more than 85% of all cancers originate
rom the epithelia lining the internal surfaces of human or-
ans. At early stages of cancer development, it is the surface
issue layer that carries diagnostic information, while the un-
erlying bulk tissues are mostly irrelevant and even interfere
ith the detection. In addition, tissue components in the bulk

re the major sources of fluorescence background that com-
licates the analysis of Raman spectra. In recent years, there
s a trend to go from bulk-tissue spectroscopy to surface-
issue spectroscopy. Polarization gating has been exploited to
electively detect the photons singly backscattered from the
urface layer within the depth of one scattering length.12 A
atural step further would be to retrieve single cells from the
pithelium by medical cytology means and study them in iso-
ation from the bulks. This not only creates a disease-
creening tool, but also allows investigation on the cell dy-
amics of carcinogenesis in a controlled environment. LTRS
s a way of realizing these new ideas.1,2 Unfortunately, current
TRS research mainly focuses on bacteria,13,14 because the
rimary culture techniques are unfamiliar to the optical com-
unity and human cells are larger and harder to trap. Here we

all for attention to LTRS research on cancers.
Successful Raman diagnosis also depends on spectral

nalysis. Visual inspection of Raman peaks for clues is sub-
ective, correlations among multiple peaks are often hidden,
nd simple peak ratios inevitably overlook the overall spectral
hape as well as fine spectral details. Sophisticated diagnostic
odels always resort to some kind of numerical algorithms.
rincipal component analysis �PCA� is commonly employed

o reduce data dimensionality; linear regressions or logistic
egressions are the prevailing algorithms for classification.
he role of individual Raman peaks in the classification, i.e.,
hich peak is important and which is not, is qualitatively
rgued �but not quantitatively evaluated� by visual inspection

f the spectral patterns of the principal components �PCs�

ournal of Biomedical Optics 034002-
included in the regressions.1,7 Recently, �2 fittings of the
tissue/cell spectra have been attempted, using the spectra of
�10 major chemical constituents as the expansion basis.6,15

However, this method seems oversimplifying, since a cell eas-
ily contains at least 8,000 different proteins and many other
components. The incompleteness of the spectral basis set can
impose a problem to the validity of the results. At the least,
some fine structures of the Raman data could be missing in
the base spectra and thus ignored in the fitting. In addition, the
results can be prone to distortion due to the dominance of one
or two strong Raman constituents.

Artificial neural network �ANN� is a nonlinear, multidi-
mensional model capable of classifying spectral data.9,16 The
flexibility of ANN results in better discriminating power than
any other regression models. But the nonparametric black-box
nature of ANN has prevented its adoption compared with
other explicit algorithms. To overcome this problem, Sigurds-
son et al. invoked sensitivity analysis in their ANN study of
skin cancers,16 in which the contribution of each Raman fre-
quency to the network output was numerically evaluated by a
function called a sensitivity map.

In this paper, we report an LTRS investigation on colorec-
tal cancers and the ANN classification and sensitivity map
analysis of the data. Characteristic bands identified by the
sensitivity map are linked to intracellular biochemical alter-
ations. The diagnostic relevance of these bands is further stud-
ied by Student’s t-tests.

2 Methods
2.1 Sample Preparation
This study was approved by the Institutional Review Board of
the Cancer Hospital of Fudan University. Written informed
consent was obtained from each patient. A total of ten patients
with sporadic colorectal adenocarcinomas were involved, in-
cluding seven males and three females, all Asians, at ages
from 33 to 79 with an average of 57.1. Tissue specimens were
obtained by surgical resection from the patients. From each
patient, the adenocarcinoma and a small amount of normal
mucosa adjacent to the tumor site �with �6 cm separations�
were removed. Histological assessments reported no tumor
cell infiltration in all the normal mucosa sections. Upon re-
moval, single-cell suspensions were prepared from small por-
tions of the tissue specimens following primary culture
protocols.3 Details of the processing procedure were described
previously.1 Two suspensions were produced for each patient,
one from the tumor and the other from the normal.

Histopathology analyses were conducted on the tissue
specimens by two pathologists working independently. Only
the cases in which consensus was reached are included in the
following study. The pathology conclusions serve as the
golden standard for the training and testing of ANN. The
training set comprises seven moderately-differentiated cases
and one poorly-differentiated case, and the test set comprises
two well-differentiated cases.

2.2 LTRS Data Collection on Single Living Cells
Data were acquired by using an LTRS system described
previously.1,17 Briefly, the excitation beam of a diode laser
�wavelength 782.5 nm� was delivered into the back pupil of

the objective �100�oil immersion� of a Nikon TE2000U dif-
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erential interference contrast microscope. A laser trap was
ormed at the focal point. The excitation power was
1.5 mW, measured near the focal point.

Single-cell suspensions were analyzed in the sample cham-
er mounted on the microscope stage. Single living epithelial
ells were selected, captured, transferred to clear regions, and
easured. The measurement of a cell comprised a 60-s signal

ntegration and a 60-s background integration with the cell
aptured and released, respectively. Their difference was re-
orded as the raw data signal R��̄�, with �̄ the Raman shift.

A total of 20 cancer cells and 20 normal cells were mea-
ured for each patient. The ten patients were divided into two
roups according to the time sequence of their medical opera-
ions: data from the first eight were used to train the ANN,
hile data from the last two were used for testing. This gen-

rated a training set of 160 cancer and 160 normal cells and a
est set of 40 cancer and 40 normal ones. Figure 1 presents the
verage spectra �cancer �curve a�; normal �curve b�� of the
raining set and their differences �curve c�.

.3 Diagnostic Modeling by Neural Network
Approach

.3.1 PCA reduction of spectral data
rincipal component analysis is commonly used to reduce
ata dimensionality. The first step of PCA is a normalization
f every spectrum in order to cancel out an overall factor
aused by the fluctuation of excitation power. In our PCA,
ach spectrum was treated as an M-dimension vector, where

M =1027 is the total number of pixels. Hence, a unit-vector
ormalization scheme was adopted,18 i.e.,

d��̄� = R��̄�/��
m=1

M

R2��̄m��1/2

. �1�

he PCA performed on the 320 spectra in the training set
evealed that the first 12 PCs account for 80% of the total
ariations. Each spectrum from Eq. �1� was then converted to

ig. 1 Average spectra of the cancerous �a� and normal �b� cells in the
raining set and their difference spectrum �c=a−b�. The inset is a
hoto of a captured epithelial cell.
he scores of corresponding PCs formulated as

ournal of Biomedical Optics 034002-
Xi
�n� = �

m=1

M

�d�n���̄m� − 	d��̄m�
� · PCi��̄m�, i = 1, . . . ,M ,

�2�

where 	d��̄�
��1/320��n=1
320d�n���̄�, with index n denoting

different cells of the set. In Eq. �2�, the subscript m denotes
the individual pixel of a spectrum, while the subscript i de-
notes the score. In PCA, the total number of scores equals the
total number of pixels, but only the first tens of scores are
useful. To facilitate network training, the scores of the training
data were further rescaled to zero mean and unit variance, i.e.,

xi
�n� = �Xi

�n� − 	Xi
�/�i, i = 1, . . . ,M , �3�

where 	Xi
��1/320��n=1
320Xi

�n� and �i���1/319��n=1
320�Xi

�n�

− 	Xi
�2�1/2.

2.3.2 Neural network architecture
The ANN we employed is a two-layer feedforward network
with backpropagation training. The network architecture is
depicted in Fig. 2 and belongs to the perceptron category. The
open circles labeled with h or y represent the neurons, while
the solid circles labeled with x represent the inputs to the
network. The two circles labeled with “1” are plotted in order
to treat the biases in the same fashion as the weights. The
network architecture is uniquely defined by the arrangement
of the neurons and their interconnections. Each neuron can
have multiple inputs but only one output. Each arrow into a
neuron represents an input, and the arrow out represents the
output. Each interconnection between two nodes is associated
with a factor w, called weight. For example, the arrow linking
xI to h1 carries a weighting factor w1I, which means that the
contribution of xI to the input of neuron h1 is w1IxI �Eq. �6�,
shown later�. The x nodes stacked on the left serve as the
inputs to the network, and their values are substituted with the
scores from Eq. �3�. The h neurons stacked in the middle form
the hidden layer, and the y neuron on the right denotes the
output layer. The numerical outputs of the h neurons and y
neuron are given by Eqs. �6� and �7� later, respectively. Here,
the output layer is set to one single node, since a cell is clas-
sified as either normal or cancerous. So our network is essen-
tially a binary neural classifier �with modifications described

Fig. 2 Structure of the binary feedforward neural network.
later�. The number of nodes in the input column I and the

May/June 2007 � Vol. 12�3�3
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idden layer H were determined in the training session by
rial and test. Best results were achieved at I=5 and H=8.

The extreme flexibility of multilayer perceptron networks
o approximate arbitrary complex posterior probability func-
ions calls for special procedures to avoid overfitting and de-
ect outliers. Outliers are data points that have been assigned
o a wrong category of patterns in the original data set. They
re defects of the experimental data. For example, if a cell in
he training set is truly normal, but instead determined as
ancerous by pathology, then it is an outlier, or vice versa.
he existence of outliers is an outcome of the imperfectness
f data collection. In our experimental data, the pattern of a
ell was set to the pathological classification of the tissue
rom which the cell was harvested: if the tissue was normal,
he cell was normal, or vice versa. However, there was a small
ossibility that a cell inside a malignant tumor was actually
ormal, but erroneously labeled as cancerous based on the
istopathology grading on the tumor tissue, resulting in an
utlier.

Outliers in the training set can significantly shift the deci-
ion plane of the network if uncorrected and consequently
ffect the accuracy of network predictions. An outlier prob-
bility �= �0,1� was introduced in Ref. 16 to correct the clas-
ification flipping due to the existence of outliers. In our bi-
ary case, this means that

�P�1x� � P0�1x��1 − �� + �P0�0x� ,

P�0x� � P0�0x��1 − �� + �P0�1x� ,

P0�0x� = 1 − P0�1x� ,

�4�

here P0�1 x� and P0�0 x� are the posterior probability for
ancer �class 1� and normal �class 0� at the absence of outli-
rs, respectively and P�1 x� and P�0 x� are the actual poste-
ior probability for cancer and normal, respectively. Here the
erm “posterior” means post-experiment, and the posterior
robability is the conditional probability of the cell’s classifi-
ation under the requirement that it has the characteristics to
roduce Raman spectrum x. Both P�1 x� and P�0 x� contain
wo terms, indicating that the cell data x carry 1−� probabil-
ty of not being an outlier and � probability of being an out-
ier. After straightforward calculations, Eq. �4� can be simpli-
ed to

�P�1x� = P0�1x��1 − 2�� + � ,

P�0x� = 1 − P�1x� ,
�5�

here ���. The connection of Eq. �5� to the ANN output
Fig. 2� is through P0�1 x�.

In ANN, the response �the output� of a neuron to the
timuli �the inputs� is calculated through its activation func-
ion. In Fig. 2, the activation functions are hyperbolic tangent
or the hidden layer, i.e.,

hj�x� = tanh��
i=1

I

wjixi + wj0� , �6�
nd linear for the output layer, i.e.,

ournal of Biomedical Optics 034002-
y�x� = �
j=1

H

w̃jhj�x� + w̃0, �7�

where wji and wj0 are the input-to-hidden weight and bias,
and w̃j and w̃0 are the hidden-to-output weight and bias. The
ANN estimate to the posterior probability without outlier cor-
rections P0�1 x� is predicted as

P̂0�1x� =
1

1 + exp�− y�x��
. �8�

Consequently, the ANN estimates to Eq. �5� become

�P̂�1x� =
1 − 2�

1 + exp�− y�x��
+ � ,

P̂�0x� = 1 − � −
1 − 2�

1 + exp�− y�x��
.

�9�

2.3.3 Input-output and training of the network
The training set comprises the cell data of eight patients,
D= ��x�n� , t�n�� n=1,2 , . . . ,320�, with x�n� the rescaled scores
in Eq. �3�, and t�n� the target value defined as

t�n� = �1, if cell is cancerous;

0, if cell is normal.
�10�

The procedures of Ref. 16 were executed to train the network,
but with some modifications. The network optimization was
done by minimizing a cost function redefined as

S�w� = �
n=1

320

e�n��w,�� + �EW�w� , �11�

where

e�n��w,�� � − �t�n�P̂�1x�n�� + �1 − t�n���1 − P̂�1x�n���� ,

�12�

and

EW�w� �
1

2�
i=1

W

wi
2. �13�

The first term on the right side of Eq. �11� is the cross-entropy
error function, while the second one is a weight-decay regu-
larization to restrict network overfitting on the input noise.
The weight vector w is a simplified notation for all the net-
work weights and biases, i.e., w��wji , w̃k  i=0, . . . , I ; j
=1, . . . ,H ;k=0, . . . ,H� and its dimension W= �I+2�H+1. It
is worth pointing out that Eq. �11� is different from the special
case of c=2 in Ref. 16 for several reasons, where c is the
number of output classes. The first is that our case employs
only one instead of two sets of hidden-to-output weights, so
the network is simpler and the dimension of w smaller; the

second, P̂�1 x�n�� in Eq. �12� is calculated using the logistic
function, while in Ref. 16, the softmax function is used and
the two calculated posterior probabilities are not independent,

inducing problems in the evaluation of the inverse Hessian

May/June 2007 � Vol. 12�3�4
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nd causing a singularity of �S�w� /�� at �=0. Indeed, our
umerical computations confirmed that Eqs. �11� to �13� pro-
uce better training results than the c=2 version of Ref. 16.

The unknown parameters are the network weights-biases
and the hyperparameters � �Eq. �11�� and � �Eq. �9��. The

raining is carried out by iterations on two nested loops. In the
nner loop, the weights are optimized using a Broyden-
letcher-Goldfarb-Shanno �BFGS� quasi-Newton algorithm19

o minimize the cost function S�w� at fixed �� ,��; in the
uter loop, the hyperparameters �� ,�� are adapted by maxi-
izing the evidence20,21 p�D � ,�� at fixed w. �For original

escriptions, see Refs. 16 and 22�. We rephrase the key points
n adapting � and � here for the purpose of completeness.
he Gauss-Newton approximation to the Hessian matrix is
rst computed as

A�w� = �
n=1

320
�e�n��w,��

�w

�e�n��w,��
�wT + �IW�W. �14�

he W�W symmetric matrix A�w� is positive definite if �
0, so accordingly its determinant is always positive; as a

esult, the logarithmic in Eq. �16� is defined. The identity
atrix in Eq. �14� comes from the second order derivatives of

W�w� in Eq. �11�. The hyperparameter � is updated as

�new = �W − � Trace A−1�w��/�
i=1

W

wi
2, �15�

nd the scaled outlier probability � is updated by minimizing
he function

C��� 	 S�w� +
1

2
ln�det A�w�� . �16�

.3.4 Sensitivity maps

espite the lack of physical interpretation of neural network
arameters, sensitivity maps of ANN were suggested as an
ssential tool to establish explicit correlation between the in-
uts and the outputs.16 At the network inputs end �i.e., the
cores�, one could further map this correlation back to the
pectral space through the relationship between the scores and
Cs. In this way, the sensitivity map is capable of character-

zing the contributions of individual vibrational bands to the
lassification of cancer versus normal.

Physically, this means a biochemical change correlated to a
umor progression is expressed as intensity variations at cor-
esponding Raman bands, which in turn induce a perturbation
n the network output. The higher the ratio between the per-
urbation to the input variation, the more relevant the corre-
ponding chemical substance is to the course of disease trans-
ormation.

Mathematically, the sensitivity map is defined as the de-

ivative of the estimated posterior probability P̂�1 x� with
espect to the Raman intensity. The absolute-value-average

16
ensitivity is one type of such maps,

ournal of Biomedical Optics 034002-
s��̄m� =
1

320�
n=1

320 � � P̂�1x�n��
�d��̄m�

�, m = 1, . . . ,M , �17�

where

� P̂�1x�
�d��̄m�

=
�1 − 2��exp�− y�x��
�1 + exp�− y�x���2 �

j=1

H

w̃j�1

− hj
2�x���

i=1

I
wji

�i
PCi��̄m� . �18�

Finally, the sensitivity map is formulated as the unit-vector
normalization of Eq. �17�, i.e.,

s̃��̄� = s��̄�/��m=1

M
s2��̄m��1/2

. �19�

3 Results and Discussion
3.1 Classification
The network was trained on the training set described in Sec.
2.2, comprising Raman spectra of 160 cancerous and 160 nor-
mal cells from eight patients. The network weights and biases
were initialized with random numbers of Gaussian distribu-
tion at zero mean and �2=1/ I. Best training results were
accomplished at I=5 and H=8 by trial and test on various
combinations of �I ,H�; the network performance started to
deteriorate when I
6.

We therefore restrict the following discussions to the case
of I=5 and H=8. The cost function S�w� had 47% chance of
hitting the global minimum after runs on different initializa-
tions. Results at local minima were also close but were dis-
carded anyway. There were no observable differences among
the network predictions once the global minimum was
reached, although the settled network weights varied from run
to run. The final values of the hyperparameters were �
=0.7126 and ���=0.0374. The average outlier
probability,16 defined as the average percentage of the second
term inside the two-term summation on the right side of Eq.
�4�, was found to be 0.0252.

After the values for the network weights and hyperparam-

eters were settled, the estimated posterior P̂�1 x� was calcu-
lated for each cell and compared with a threshold value pth to

predict its class; it was cancerous if P̂�1 x�� pth, or normal
otherwise. A reasonable value pth=0.5 was chosen. In the
final classifications of the training set, 138 out of 160 cancer-
ous cells and 138 out of 160 normal cells were correctly iden-
tified, reaching a sensitivity of 86.3% and specificity of
86.3%. These were considerably better than the results given
by logistic regressions1 �Table 1�.

A receiver operating characteristic �ROC� curve is com-
monly used by medical doctors to assess the performance of a
diagnostic model. It displays the dynamic trend of the model’s
predictions. In fact, it is possible to sacrifice specificity for
higher sensitivity by reducing pth, or vice versa. For example,
if we set pth=0, all the cells will be identified as cancerous,
corresponding to 100% sensitivity but 0% specificity. By
sweeping pth from 0 to 1, one can map out the ROC curve. In

a perfect model, the curve is a step function along the upper-

May/June 2007 � Vol. 12�3�5



l
r
p
R
p
m
m

t

T
m

T
s

T
p

T
p

F
m
O
t

Zheng, Qin, and Chen: Sensitivity map of laser tweezers Raman spectroscopy…

J

eft corner �Fig. 3, the OAB line�. On the other hand, a
andom-guess model possesses no predictive power and thus
roduces an ROC curve along the diagonal. The closer an
OC curve to the upper-left corner, the better the model’s
erformance. In Fig. 3, the ROC of the current model shows
uch improvement over that of the logistic regression
odel.1

In a double-blinded test of the ANN, we fed the data from
wo new patients to evaluate its capability of predicting new

able 1 Predictions of this model versus the logistic regression
odel.1 Major improvements are observed in the training set

Pathology analysis ANN Logistic regressions

Normal Cancer Normal Cancer

raining
et

Normal 138 22 130 30

Cancer 22 138 36 124

Sensitivity 86.3% 77.5%

Specificity 86.3% 81.3%

est set,
atient 1

Normal 17 3 17 3

Cancer 3 17 3 17

Sensitivity 85% 85%

Specificity 85% 85%

est set,
atient 2

Normal 20 0 20 0

Cancer 3 17 4 16

Sensitivity 85% 80%

Specificity 100% 100%

ig. 3 ROC curves for this model �solid line�, logistic regression
odel1 �dashed line�, and a random-guess model �dotted line�. The
AB line along the upper-left corner represents a perfect model, while
he random-guess model flips a coin to assign a cell’s class.
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results, the so-called generalization. The test set, described
earlier in Sec. 2.2, comprised the Raman spectra of 40 can-
cerous and 40 normal cells. The network predicted correctly
17 of 20 cancer cells and 17 of 20 normal cells for the first
patient and 17 of 20 cancer cells and 20 of 20 normal cells for
the second patient. The overall sensitivity and specificity were
85% and 92.5% respectively, compared with the correspond-
ing 82.5% and 92.5% of logistic regression. The limited im-
provement in the test may be due to the samples. In fact, the
tissue specimens of the test set were graded as well-
differentiated by pathology, and a higher degree of differen-
tiation in pathology points to a smaller difference between the
normal and abnormal. In pathological terms, well-
differentiated tissues show a regular order similar to that of
normal tissues, where there are clear structures. Also cells
from well-differentiated tissues exhibit morphology similar to
those in normal tissues, such as the cell shapes, nuclear sizes,
and uniformity of cells inside the tissues. On the other hand,
in poorly differentiated tissues, the cells are aligned in a cha-
otic way, indicating a higher degree of invasiveness. Here, our
test results may provide evidence that morphological similari-
ties and biochemical similarities between the well-
differentiated cells and the normal cells are correlated.

Nevertheless, the generalization of our ANN is excellent.
A common problem in ANN algorithms is that a well-trained
network predicts very poorly on new data. This is absent in
our model.

3.2 Sensitivity Analysis
The sensitivity map is presented in Fig. 4. The split-half
resampling technique was applied to investigate the reproduc-
ibility of sensitivity maps.16 The Z scores of 100 split-half
resamplings �corresponding to 100 pairs of independent net-
works trained separately on split-half data� were found to be
above 2.3657, corresponding to a minimum 99.1% confidence
interval. Therefore, Fig. 4 is reproducible at above 99.1% con-
fidence level.

Prominent Raman bands are easily identifiable on Fig. 4.
Tentative assignments23 are listed in Table 2. Intensities at

Fig. 4 Sensitivity map of the network and the training data. Major
features are identified here and listed in Table 2. Do not confuse the
sensitivity here with that in Fig. 3.
these peaks were read out from the data and subjected to
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tudent’s t-test. We observed mean intensity increases from
ormal to cancer at 940.988, 1004, 1096.433, 1209.015,
265.006, 1304.081, 1341.605, 1437.853, 1520.245,
655.304, and 1672.795 cm−1 and decreases at the remaining
eaks. The increases occur mostly at the proteins and nucleic
cids bands, indicating that cancer cells have higher DNA/
NA and protein activities. It is a surprise that glucose �de-
reasing, p-value=0.001� and cholesterol �increasing, p-
alue=0.001� appear on the list. However, signal alterations
t 759.803, 940.988, 1004, 1096.433, 1209.015, 1341.605,
nd 1746.711 cm−1 cannot be ruled out as statistical fluctua-
ions �p-value�0.05�. Furthermore, the cancer cells system-
tically �p-value�0.05� have lower signals than the normal
nes in the spectral region below 720 cm−1 �see Fig. 1, for
xample�, which may require further investigation. This phe-
omenon is also reflected in Fig. 4 as increased sensitivity

able 2 Tentative assignments of the Raman bands identified in Fig.
, mean intensity changes �increase +/decrease −� of cancer relative
o normal, and p-values of Student’s t-tests on band intensities. The
pectral resolution of our system is 8 cm−1.

ands �cm−1� Tentative assignment
Mean

change p-Value

23.985 CuC twist Phe − 0.000

45.438 CuC twist Tyr − 0.000

59.803 Trp − 0.324

41.568 Glucose − 0.001

40.988 CuC BK str. � helix + 0.615

004 Sym. ring br. Phe + 0.333

034.556 CuH in-plane Phe − 0.000

096.433 PO2 str. DNA/RNA backbone + 0.395

132.941 CuC stretch protein − 0.000

156.272 CuC&C−N str. proteins,
carotenoids

− 0.022

209.015 Phe, Trp + 0.145

265.006 vCuH in-plane lipid + 0.000

304.081 CH2 twist lipid/adenine, cytosine + 0.000

341.605 adenine, guanine + 0.188

380.083 thymine − 0.000

437.853 CH2 deformation lipid + 0.000

1520.245 uCvCu carotenoid + 0.066

655.304 Amide I � helix, CvC str. lipid + 0.000

672.795 Cholesterol + 0.001

746.711 CvOstr. lipid − 0.330
evels at the same region, and confirmed by the colon tissue
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spectra in Fig. 5B of Ref. 23. Finally, even though mean in-
tensity changes with p-values less than 0.05 are considered as
statistically significant by medical doctors, a p-value greater
than 0.05 does not necessarily reject the correlation of a band
to the disease transformation.

3.3 Conclusions and Discussions
In this paper, we compared the technical characteristics of
DNA FCM and LTRS, including working principles, sample
preparations, hardware aspects, data collection schemes, op-
erational procedures, and sample amount requirements, for
single-cell investigation of cancers. LTRS can share the
single-cell processing procedures already existing in hospitals
for FCM, but removes the requirement of fluorescent dye
staining. Unlike DNA FCM, which replies on the accumula-
tive histogram of tens of thousands of cells, LTRS can decide
on each individual cell, which makes LTRS very advanta-
geous for diagnosing small tumors. In the meantime, by de-
tecting the biochemical activities of cancers at the single-cell
level, LTRS can provide deeper insight into the dynamics of
carcinogenesis than tissue Raman spectroscopy, because cell
functions are more fundamental than tissue functions.

Potentially, single-cell LTRS can achieve higher accuracy
than tissue Raman spectroscopy, because the course of car-
cinogenesis starts within the epithelial cells, and the epithelial
cells are the primary source of diagnostic information for
early cancer detection. In literature, some tissue components
like collagen are reported to show correlations to cancer de-
velopments. However, because genetical alterations are the
foundation of structural changes, variations in these compo-
nents are by-products of carcinogenic activities in the epithe-
lial cells and thus serve only as the secondary source of diag-
nostic information. Furthermore, many other tissue
components do not possess diagnostic information at all. Tis-
sue Raman spectroscopy suffers from two sources of interfer-
ence: one is the Raman signal from the irrelevant tissue com-
ponents; the other is the strong fluorescence and its associated
noise from the tissue bulk. Even at 785-nm excitation, tissue
fluorescence is still considerably higher than tissue Raman
signal, and mathematical preprocessing such as fifth-order
polynomial fitting is typically required to subtract the slow-
varying fluorescence background from the data. Unfortu-
nately, the noises associated with the fluorescence are left in
the processed data. Therefore, in Raman studies, it is desirable
to avoid as many fluorescence sources as possible.

In a clinical study of colorectal adenocarcinoma, we mea-
sured the Raman spectra of 400 living epithelial cells from ten
patients using LTRS. An ANN algorithm incorporating outlier
probability corrections was developed to overcome the limi-
tations existing in a previous study employing logistic
regression.1 Remarkable improvements were achieved in the
sensitivity and specificity of the predictions. Unavailable to
logistic regression, the sensitivity map of ANN was evaluated
to objectively quantify the contribution of each Raman fre-
quency in the course of carcinogenesis. Important Raman
bands were identified from the map, and Student’s t-tests were
performed on their intensities. Unlike the subjective visual
inspections commonly used in spectral analysis, the sensitiv-
ity map technique provides an objective, quantitative, and au-

tomatic way to discover important Raman peaks.
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In our experiments, only living epithelial cells were mea-
ured. The following discussions are restricted to living cells
nly. We cannot rule out the possibility of potential damage to
ome membrane proteins on the cell surface during the pro-
ess of cell isolation from the tissue, but the primary culture
rocedure we employed is well-established and should reduce
uch damage to a minimum. In the meantime, the intracellular
ubstances should be intact. Over the past decades, there have
een intense studies on cancer cell culture techniques to pre-
ent damage to the cells. Today, these techniques are already
ature and widely applied in various fields. One example is

he cell lines on the market, which came from the primary
ultures originally harvested from patients. The demand for
embrane protein protection might originally come from con-

entional FCM, which requires the binding of fluorescence
arkers to specific targets on the cell surface. After years of

evelopment, different protocols for different tissue types are
lready available in standard textbooks. LTRS on single cells
an directly enjoy the fruits of other fields to keep possible
ell damage under control. Furthermore, the major signal of
TRS originates from the volume inside the cell, so we do not
xpect a detectable alteration of the cell’s Raman spectrum
ue to the isolation processing.

The average Raman spectra of single epithelial cells �Figs.
�a� and 1�b�� share many common features with those of
issues �Fig. 5B in Ref. 23�. They exhibit a general resem-
lance in the overall spectral shapes. However, differences in
pectral details are obvious due to the extra components in
issue other than the epithelial cells. The difference spectra
etween the abnormal and the normal �Fig. 1�c� in this paper
nd Fig. 6B in Ref. 23� also show similarity in general trends,
ut differ in details.

To establish our diagnostic model, we employed the tissue
istopathology assessments as the golden standard and in-
olved only those cases with consensus reached between two
ndependent pathologists. A cell’s classification was set to the
athology classification of the tissue where it originated.
here was a small possibility that a cell from a malignant

umor might be actually normal, resulting in an outlier. Un-
ortunately, it is impractical to obtain a cell’s classification
rom a direct single-cell histochemical analysis. To the best of
ur knowledge, immuno-histochemical analysis on cells/
issues is not for diagnostic purpose and cannot determine the
ormal/malignant nature of samples. It is rather used to sup-
ly assistive information for histopathology assessments. Be-
ides, immuno-histochemical information alone is not reliable
or diagnosis because the targeted proteins are also expressed
n normal cells/tissues. Our way to assign a cell’s classifica-
ion should provide the best accuracy for model training. In
oth the training set and the test set, around 14% of all cancer
ells were misidentified by our model. But in our opinion, the
utliers are only a minor source for this error, since it is
ighly unlikely that our cancer tissue samples contained such
high percentage of normal cells. As a matter of fact, our

iagnostic model was built purely on experimental data with
o prior knowledge and could be affected by the noises in the
ignals as well as the statistical nature of the individual varia-
ions of the cells.

Unlike the training stage of our model, the application
tage does not require prior histopathology assessment on a

ample. LTRS diagnosis can be run independent of or without
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histopathology. In a clinical application, cells from suspected
tumor sites can be retrieved through fine needle aspiration or
exfoliative cytology methods like brushing and washing and
then examined by LTRS to determine the nature of the cells.
Frequently, doctors do not know the definitive characteristics
of a suspected site without resorting to sophisticated diagnos-
tic techniques. This is where histopathology, LTRS, DNA
FCM, etc. come into play.

In many situations, doctors need to know only whether a
suspected cancer transform has occurred in the first place,
before further investigation can be triggered to find its exact
location. Exfoliative cells in pleural fluid, ascites, and urine
can be collected and analyzed by LTRS to help doctors make
decisions.

The extension of our work to other epithelial cancers is
straightforward. The single-cell diagnosis technique presented
here can be directly applied to clinical tests. Thanks to FCM,
preparation of single-cell suspensions is already routine in
hospitals today. Further, exfoliative cytology can also provide
samples to our technique. The low requirement for sample
amounts makes our technique very attractive to cancer screen-
ing.

The current work deals only with the question “Normal or
cancer?” Future studies will focus on the subclassification of
different tumor stages.
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