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Abstract. We present a method for design and use of a digital mouse
phantom for small animal optical imaging. We map the boundary of a
mouse model from magnetic resonance imaging �MRI� data through
image processing algorithms and discretize the geometry by a finite
element �FE� descriptor. We use a validated FE implementation of the
three-dimensional �3-D� diffusion equation to model transport of near
infrared �NIR� light in the phantom with a mesh resolution optimized
for representative tissue optical properties on a computing system
with 8-GB RAM. Our simulations demonstrate that a section of the
mouse near the light source is adequate for optical system design and
that the variation of intensity of light on the boundary is well within
typical noise levels for up to 20% variation in optical properties and
nodes used to model the boundary of the phantom. We illustrate the
use of the phantom in setting goals for specific binding of targeted
exogenous fluorescent contrasts based on anatomical location by
simulating a nearly tenfold change in the detectability of a
2-mm-deep target depending on its placement. The methodology de-
scribed is sufficiently general and may be extended to generate digital
phantoms for designing clinical optical imaging systems. © 2007 Society
of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2800033�

Keywords: predictive design; mouse phantom; magnetic resonance imaging; diffu-
sion equation.
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Introduction
iological tissue both absorbs and scatters light. Diseased tis-

ue can be distinguished from normal tissue on the basis of
ifferences in optical properties arising from physiological
ariations. Optical imaging with probes formed by biologi-
ally relevant molecules targeted at an intrinsic molecule or
eceptor overexpressed in a disease conjugated with a fluores-
ent marker to visualize the receptor can provide a cost-
ffective molecular imaging mechanism. The ability to image
nd visualize molecular scale events with targeted probes
akes optical imaging an attractive modality for small animal

maging. Non-ionizing light facilitates the use of optical
robes for longitudinal in vivo studies and provides an effec-
ive platform for drug discovery and development.1–4

The detectability of fluorescent contrast, image reconstruc-
ion, and ability to visualize and distinguish between normal
nd diseased tissue is influenced by the nature of light trans-
ort and distribution. Molecular imaging necessitates careful
esign of optical instrumentation and application of appropri-
te fluorescent probes in adequate concentration to enable the
etection of pertinent information from the scattered signal.

In this paper, we present a generic method based on optical
ransport to create a digital mouse phantom and illustrate its
sefulness in predicting the performance measures for an im-
ging system. A phantom could be used to design imaging
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systems, assess imageability of fluorescent probes, and aid in
model-based iterative optical image reconstruction. Predictive
design could also help in preventing the sacrifice of animals
and in bridging the gap between animal models and clinical
studies.

A digital phantom is a numerical representation of a struc-
ture that can be represented geometrically. Advances in com-
puting technologies over the past two decades have replaced
the early analog phantoms and have led to a spurt of digital
phantom–based simulation of imaging systems.5–7 Phantoms
have been used extensively in designing model-based image
reconstruction algorithms for optical imaging. Proofs of con-
cept experiments have involved the use of both canonical ge-
ometries and finite element �FE� meshes to model anatomical
structures. For example, phantoms ranging from finite rectan-
gular slabs,8,9 infinite slabs,10 circular or cylindrical
geometries,11 and three-dimensional �3-D� FE mesh for a
conical shape12 have been used to model highly scattering
properties of breast tissue.

Magnetic resonance imaging �MRI� images have been
used as digital priors for over a decade.13,14 Use of prior ana-
tomical information in the form of MRI images to improve
optical reconstruction was first suggested by Barbour et al.15

Chang et al. used a linear perturbative model for time-
independent optical sources for MRI-assisted optical recon-
struction for mammography.16 MRI priors have been recently
proposed for the identification of probability density functions
1083-3668/2007/12�5�/051804/8/$25.00 © 2007 SPIE
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hat are used in a formulation of optical reconstruction within
Bayesian framework.17

Optical reconstruction for brain imaging for the rat cra-
ium with MRI priors was reported by Pogue et al.18 The
pproach involved the use of a fine FE mesh of the segmented
RI image with prescribed optical properties to perform op-

ical measurements and a coarse FE mesh for the reconstruc-
ion. MRI brain image slices segmented into regions depicting
kin, bone, and gray and white matter have been used to cre-
te a layered head model with FEM meshes representing ana-
omical priors for use in optical reconstruction.19 3-D digital

aps of an MRI rat cranium have been used to perform he-
odynamic studies of the rat brain.20

In a different application involving the visualization of
ubsurface lesions with near infrared �NIR� cameras, FE digi-
al phantoms from MRI images have also been used in novel
olume rendering techniques that mimic NIR light transport
n a human arm.21

Adaptive FE meshes that incorporate varying mesh resolu-
ions based on the shape and size of anatomical structures and
argets have been pioneered in model-based iterative optical
mage reconstruction schemes by a number of
esearchers.22–25

In a recent publication, Dogdas et al.26 have reviewed the
xisting small animal imaging phantoms and described the
rocess of creation and design of Digimouse, a digital mouse
hantom generated from co-registered x-ray CT and cryosec-
ion data, and applied it to simulation of bioluminescence.

A diffusion approximation �DA� to the radiative transfer
quation �RTE� has been extensively proposed and used to
odel photon transport in biological media. Analytical ex-

ressions of DA for infinite cylinder and slab geometries in
he time domain have been formulated and applied to optical
mage reconstruction. FE equations of DA in the time and
requency domain in two dimensions and three dimensions
ave been presented and utilized in absorption, fluorescence
eporter concentration, and lifetime reconstruction as well as
n small animal scanning systems and in multimodality imag-
ng with ultrasound and MRI for clinical applications in brain
nd breast imaging.15–19,27–34

DA is known to be applicable when scattering is much
reater than absorption and at distances greater than a few
cattering lengths from the source. In situations pertaining to
ow scattering regions and subsurface imaging, radiative
ransfer equation and a stochastic Monte Carlo model for light
ropagation in tissue are the more exact formulations.35,36

owever, simplicity, ease of use in the case of complex ge-
metries, and potentially faster computation are the key rea-
ons why DA continues to be the widely preferred biomedical
hoton transport model.

We utilize our validated numerical implementation of the
-D diffusion equation to design the digital mouse
hantom.37,38 We first create the boundary of the mouse phan-
om from MRI data using a series of image processing steps.

e next discretize the geometry with an FE descriptor using
EMLAB. The mesh resolution of the FE model is represen-

ative of the optical properties of biological tissue and opti-
ized to perform on a computing system with 8-GB RAM.
e then demonstrate through simulations that a section of the

ouse near the light source is adequate to predict perfor-

ournal of Biomedical Optics 051804-
mance of an imaging system and that the variation in intensity
of light detected on the boundary is well within typical noise
levels for up to 20% variation in optical properties and num-
ber of nodes used to model the boundary of the phantom. Last
we illustrate the significance of modeling the undulating
boundary of a mouse by predicting a tenfold change in the
detectability of a 2-mm-deep fluorescent target dependent on
the local curvature of the boundary. The range of detectability
has implications for the desirable specific binding of targeted
fluorescent contrast agents based on mouse anatomy. This
work is aimed at standardization of digital phantoms used in
optical imaging system development. To the best of our
knowledge, this is the first study that utilizes a comparative
analysis of the performance of 3-D FE diffusion and 3-D ana-
lytical diffusion models on a cylindrical geometry to assess
the sensitivity and use of fluence computations on an FE
model with changes in the optical properties and boundary of
a small animal model.

2 Methodology
Our methodology has been inspired by the extensive use of
MRI data as anatomical priors and the diffusion equation as a
model for photon transport in biological tissue. The broad
steps consisting of generating mouse geometry from MRI
data, using predictive fluence computations to arrive at opti-
mal size and mesh resolution of the phantom, and assessing
its robustness with changes in optical properties and boundary
are shown in Fig. 1. Figure 1 also depicts the principle
sources of variability likely to affect the final design of the
phantom in each step.

2.1 Creation of Mouse Phantom
We have generated the mouse phantom from MRI data using
the following procedures.

2.1.1 Boundary extraction
We extract the mouse boundary from MRI data through the
application of image processing algorithms, as shown in Fig.
2. The MRI data is first smoothed using a one-dimensional
�1-D� Gaussian filter. A threshold is applied next on the fil-
tered image volume. The crispness of the extracted boundary
is particularly sensitive to the value of the threshold. Lower
threshold values result in a boundary cluttered with undesir-
able clusters of points, whereas the higher threshold value
results in the extraction of internal organs of the mouse along
with the final boundary. In most real-world problems, fore-
ground and background regions do not follow perfect bimodal
intensity distributions, resulting in some overlap of intensities.
We choose a threshold that eliminates as much of the back-
ground as possible without affecting the foreground object.
Noise tends to persist despite thresholding and is subsequently
removed through a process of erosion, image subtraction, and
connected component analysis.

2.1.2 Geometry generation
The original MRI data set of the mouse has 26 slices, each
with dimensions 256�256. Resolution within each 2-D slice
is 0.78�0.78 mm. The adjacent slices are separated by
2.0 mm. We do not consider some of the frames toward the

two edges of the mouse for geometry creation because the

September/October 2007 � Vol. 12�5�2
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ntire boundary is not retrieved in these slices. The geometri-
al representation of the mouse is created from the extracted
oundary through a process of selecting frames, contours, and
dge segments and finally lofting the frames to generate a 3-D
tructure. For every two-dimensional �2-D� frame, we first
enerate a contour followed by a 2-D curve and a 2-D solid
esh. Last, we loft each 2-D solid mesh with appropriate

pacing to create the geometry, as shown in Fig. 3.

.1.3 Mesh generation
e use FEMLAB39 to create the geometry and FE mesh of

he mouse phantom. The transformation of mouse geometry to
ouse mesh is depicted in Fig. 3. Mesh resolution is dictated

y the needs of the diffusion model to accurately simulate
ight propagation in biological tissue and constrained by the
vailable hardware and software used for FE analysis. Our
arlier studies to map the validity of using an FE 3-D diffu-
ion model as an engineering tool for the predictive assess-
ent of imageability through a systematic comparison of

epth-resolved fluence calculated by diffusion equation and
he gold standard Monte Carlo model had shown that al-
hough, in theory, the diffusion model applies when �s���a,
n practice, its performance can vary sharply for the same

s� /�a ratio.37,38

We summarized the rules of thumb for applicability of the
E diffusion equation for excitation fluence as:

Fig. 1 Steps and sources of variat
Fig. 2 Illustration of mouse boundary generation.

ournal of Biomedical Optics 051804-
1. The average mesh resolution should be higher than the
mean free path close to the source in the region of interest �the
average value of node-to-node distance �mfp�.37

2. The distance from the source to the edge of the phan-
tom should be at least �5*penetration depth.38 The upper
limit for the size has been discussed and specified as
12*penetration depth by Wilson and Jacque.2

3. The model is not applicable37 at distances �1 mfp.
4. The model shows the maximum departure37 from the

Monte Carlo at a distance of �2 mfp. This difference can be
estimated so that appropriate tolerances may be used in de-
sign. The mean free path mfp and penetration depth � are
given by:

mfp =
1

�a + �s�1 − g�
,

� =
1

�3�a��a + �s�1 − g���1/2 .

�a is the absorption coefficient, �s is the scattering coeffi-
cient, g is the anisotropy, and the reduced scattering coeffi-
cient �s�=�s �1−g�.

he creation of a digital phantom.
ion in t
Fig. 3 Illustration of mouse geometry creation.
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.2 Phantom Size and Mesh Resolution
e consider a range of optical properties in biological tissue

nd compute the derived optical properties mfp and �. The
ange of optical properties in biological tissue2 is presented in
able 1.

We first construct an equivalent cylindrical phantom with
he same length and similar mesh resolution as that of the
esired mouse phantom. In accordance with the rules of
humb, a single cylindrical phantom capable of simulating
ight propagation across the range of optical properties would
eed to have the size specified by the highest penetration
epth and the mesh resolution specified by the lowest mean
ree path. This phantom should have at least a diameter of
0.4 mm and a length of 80.8 mm, and its FE model should
ave an average node-to-node distance of �0.05 mm. Our
urrent hardware �64-bit HP UNIX workstation� can provide
maximum mesh resolution of 0.98 mm for a cylinder of this

ize. Based on the capability of the hardware, we have de-
igned a cylindrical phantom of 42-mm diam and 82-mm
eight represented by 199,414 nodes, 1,146,319 elements, and
0,690 boundary nodes.

The digital mouse phantom shown in Fig. 4 is constructed
y simply shortening the mouse geometry by an equal dis-
ance from the axial extremities for the mouse phantom to
ave the same length and mesh resolution as that of the cy-
indrical phantom.

.3 Optical Properties
ased on our earlier studies comparing light fluence com-
uted by Monte Carlo simulation and the diffusion equation,
e expect the attributes of the “design” phantom to be appro-
riate for prediction of photon transport for �s�=0.5 mm−1,

Table 1 Range of optical

�s �mm−1� g

Max 100 0.95

Min 10 0.8

ig. 4 Slices used in the comparative analysis in the mouse phantom.

he source is located in the central slice 3.

ournal of Biomedical Optics 051804-
�a=0.01 mm−1, and nr=1.38. In order to verify and assess
the applicability of the phantom for light simulation at vary-
ing axial and angular distances from a point source located on
the boundary, we measure simulated fluence on the boundary
of five slices axially located at �0 to 0.5� mm and shifted by
±�3.0 to 3.5� mm, ±�7 to 7.5� mm on either side of a point
source positioned approximately near the midaxis.

We use the comparative performance40 of the FE diffusion
equation and our MATLAB implementation of a 3-D analyti-
cal diffusion model27 on a cylindrical geometry to verify the
size and mesh resolution of the mouse phantom for the “de-
sign” optical parameters. We evaluate excitation fluence from
the FE model �Fe� and compare it with the analytical solution
�Fa� at all boundary points �z ,�� in each z slice for the optical
properties corresponding to the phantom by computing Fe/Fa
where z is the axial coordinate and � is the source-detector
angle in the xy-plane. We then perform a sensitivity analysis
of the “design” phantom by increasing the scattering and ab-
sorption coefficient by 5, 10, and 20% to study the variation
in Fe/Fa. The results of the sensitivity analysis are presented
in the next section.

2.4 Boundary Modeling
As shown in Fig. 1, there are several image processing steps,
each of which is a potential source of variation in the genera-
tion of a mouse phantom. For the current study, we focus on
the number of edge segments that are used to describe the
contours selected as the boundary for each frame. Local ge-
ometry and mesh resolution close to the source and detectors
are known to have a strong influence on simulated fluence.11,38

Sources and detectors are located on the boundary. Therefore,
it is pertinent to assess the sensitivity of the simulated results
to variations in the boundary modeled through a change in the
number of edge segments. We consider the number of edge
segments in the basic mouse design and generate mouse
meshes with edge segments such that the number of boundary
nodes change by approximately ±5%, ±10%, and ±20% from
the number of boundary nodes in the designed case. The nega-
tive variation is generated by down-sampling the edge seg-
ments from the base design, and positive variation by up-
sampling the edge variation from the base. The base design
has 60 edge segments. The change in the number of segments
leads to a change in the number of nodes in the FE model.
The number of edge segments, nodes, and segment lengths in
each design and their percent difference from the base design
is shown in Table 2.

We compare the excitation light fluence for the six variants
in boundary models with the base design in five slices axially
located at �0 to 0.5� mm and shifted by ±�3.0 to 3.5� mm,
±�7–7.5� mm on either side of the point source positioned

ies in biological tissue.

s� �mm−1� �a �mm−1� nr

0 1 1.42

.5 0.1 1.38
propert

�

2

0

approximately near the midaxis, similar to that in the cylin-

September/October 2007 � Vol. 12�5�4



d
t
r

3
3
W
d
s
s
s
a
�
t
t

3
F
b
m
fi
1
v
r
T
c
s

m
t
t
p
d

D

1

2

3

B

4

5

6

Dwivedi, Krishnan, and Suryanarayanan: Digital mouse phantom for optical imaging

J

rical phantom. As shown in Fig. 4, the source is located in
he central slice 3. Each slice has a thickness of 0.5 mm. The
esults of the comparison are presented in the next section.

Results
.1 Verification of Design Parameters
e compute the variation in excitation fluence40 with source-

etector angle from our 3-D FE implementation of the diffu-
ion model �Fe� and the analytical solution of the 3-D diffu-
ion equation �Fa� on the cylindrical geometry in all five
lices over a 0 to 360-deg range in the source-detector
ngles for the “design” optical properties ��s�=0.5 mm−1,

a=0.01 mm−1, and nr=1.38�, ensure that Fe/Fa�1 at dis-
ances that are a few mfp away from the source,11 and observe
hat as the distance from the source �mfp, Fe/Fa→1.

.2 Sensitivity to Variation in Optical Properties
or our analysis, we eliminate all nodes in the slice on the
oundary that are within 2 mfp of the source and compute
ean Fe/Fa ratios for sixteen representative cases over the
ve slices with mean free paths corresponding to 0%, 5%,
0%, and 20% increases in �a and �s� from their “design”
alues of 0.01 mm−1 and 0.5 mm−1, respectively. The mean
atio is found to vary linearly with mfp over the design space.
he mean ratios increase with increase in scattering coeffi-
ient and decrease with increase in absorption within each
lice.

The differences in the FE and the analytical diffusion
odel could arise from both meshing and the differences in

he manner in which the boundary condition is incorporated in
hem.3,27 We would expect Fe/Fa→1 to represent the average
attern of comparison within an error margin. The error is

Table 2 Attributes of design variants of the mouse model.

esign
No. of
Edges Nodes

Boundary
Nodes Segment Length

10 117235 �−11% � 23522
�−19.1% �

0.9815 �0.4%�

20 127440 �−3.3% � 26290
�−9.5% �

0.9807 �0.36%�

30 129575 �−1.7% � 27618
�−5% �

0.98 �0.3%�

asic 60 131804 29060 0.9772

80 133300 �1.1%� 30814
�6%�

0.9752 �−0.2% �

95 134596 �2.1%� 32360
�11%�

0.9720 �−0.5% �

100 138389 �5%� 34996
�20.4%�

0.9532 �−2.5% �
efined as:

ournal of Biomedical Optics 051804-
Error = abs�Mb − Mt

Mb
	 � 100.

Mb and Mt are the mean Fe/Fa ratio of the “design” case and
the test cases, respectively, calculated over all the slices. The
error for each test case used in the sensitivity analysis is
shown in Table 3.

The error rises to a maximum of 5.7% for up to a 20%
increase in the optical absorption and reduced scattering co-
efficients for source-detector distances varying from 1 mm to
about 7 cm. However, as �s� increases to 20 mm−1 ��4000%
increase�, our computations �not presented here� show that at
a source-detector angle of 30 deg, FE fluence reduces seven
orders of magnitude faster than analytical fluence at z�0,
four orders of magnitude faster at z�3 mm, and two magni-
tude faster at z�7 mm. It could be expected that at large
distances from the source, the FE fluence would converge to
analytical fluence predictions and this trend would prevail as
long as the photon transport is diffusive, i.e., �s���a. In mea-
surements of fluorescence during frequency domain photon
migration, Thomson and Sevick-Muraca have reported a
mean accuracy of 5.4% in modulation depth and 0.3 deg in
phase up to 1-cm distance from a point source. Variability in
measurements increases to 17% in modulation depth and
1.9 deg in phase for longer distances from the source.41 Our
simulated variations in excitation fluence are of the order or
less than typical measurement noise and permit the use of the
cylinder size and mesh resolution to design the mouse phan-
tom for optical properties within 20% of the design value.

3.3 Sensitivity to Variation in the Boundary
Since there is no point-to-point correspondence of boundary
nodes among the six variant mouse phantom designs that we
described in the preceding section, we subdivide each slice
into four quadrants for the purposes of comparison. We use
the mean of log of fluence in each quadrant in each slice as a
representative estimate in each design and compare those es-
timates with the same measure in the basic design. Thus, the
basis of our comparison is a ratio of the mean of log. Mean of
log as an estimate makes sense since the fluence varies expo-
nentially with source-detector angle.

In order to understand the nature of the variation, if any,
between each design variant, we study the similarities and/or
differences across the slices of each design. We ensure42 that

Table 3 Percent error for each test case in the sensitivity analysis
study.

�a �mm−1� 0% 5% 10% 20%

�s� �mm−1�

0% 0.0 1.39 2.79 5.38

5% 0.57 1.45 2.83 5.46

10% 0.62 1.46 2.87 5.53

20% 1.31 1.51 2.95 5.69
each of our data sets follow a normal distribution while re-
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ecting outliers that lie within 2 mfp of the source. We use
nalysis of variance �ANOVA� tests42 to assess whether there
re significant differences of ratios of mean of logs over all
lices and all variant designs, over each slice across all de-
igns, and over each design across all slices. The null hypoth-
sis for the two-way ANOVA test is that the ratios of mean of
ogs over all mouse designs in all regions do not differ sig-
ificantly. At a 95% confidence interval, we find no statisti-
ally significant difference between our six design variants.
hange in light intensity as we move away from the source in
ach design is a more dominant source of variation
p−value=0.364� compared to the change in the FE model of
he mouse �p−value=0.912�. This is also evinced by our
esults �not shown here� of a one-way unstacked ANOVA test
or comparing the similarity of distribution of ratios within
esigns and within slices.

.4 Application
ne of the important design goals for exogenous fluorescent

ontrast agents is to achieve an adequate specific binding to
he disease target to enable detection through an optical im-
ging system.43 Target-to-background ratio �TBR� is a mea-
ure of specific binding. TBR is a function of the sensitivity of
he imaging system, optical properties in the interior of the
issue at the wavelengths of excitation and emission of the
uorescence, time after injection of contrast agent, and depth
nd size of the anomalous tissue and could be simulated using
issue mimicking phantoms.

To illustrate this, we embed a cylindrical fluorescent target
f 2-mm height and 3-mm diam, 2 mm beneath the boundary
f both the cylindrical and the mouse phantoms and illumi-
ate it with an excitation point source placed on the boundary
bove the target. The absorption coefficient of the target is
enfold higher than the background and is assumed to be the
ame at the excitation and the emission wavelengths. We use
ur 3-D FE diffusion model to calculate both excitation and
mission fluence in the reflectance geometry on the boundary

ig. 5 Detectability of a 2-mm-deep fluorescent target located below a
he mouse phantom position 1 �--�--�, position 2 ��+�� designed fo
arget� for two source positions. �a� Height map of the boundary on
ylinder surface and the nonuniform cross section of the mouse boun
eaks are marginally ��15 to 20%� higher for the mouse. �c� Emissio
hen the target is under a local hump compared to under a depressi
lose to the source for the two different target positions. The

ournal of Biomedical Optics 051804-
local geometry near the source for the two positions is shown
in Fig. 5�a�. The heights are averaged over the nodes that are
within an angular distance of 3-mm on the boundary over
every 1-mm axial distance for 8 mm on either side of the
source �at 0 mm for purposes of comparison�. A similar aver-
aging is used to plot the excitation and emission fluence pro-
files, shown in Figs. 5�b� and 5�c�.

As shown in Fig. 5�a�, while the height of the boundary
surface is uniform in the cylindrical phantom, the mouse
boundary is definitely nonuniform. In Fig. 5�b�, we see that
excitation fluence peaks over the mouse target are �15 to
20% higher than the targets in the cylinder, due to the smaller
size of the mouse cross section. In Fig. 5�c�, we see the local
geometry near the source strongly influencing the profile of
the emission fluence from the fluorescent target located just
below the source. The detectability from a target located be-
low a hump is about ten times higher than a target located
under a concave depression on the mouse boundary. The pro-
file of fluence is similar for the two positions on the cylindri-
cal surface. While an appropriately modeled cylindrical sur-
face to represent a small animal may be useful to determine a
conservative measure of specific binding of a fluorescent tar-
get, the realistic boundary model of a small animal enables
the prediction of the much wider range of detectability of a
target based on its anatomical location. Thus simulations on a
mouse phantom can aid in the imageability of fluorescent
probes to help define bounds on “design” parameters and en-
hance the pace of development of targeted contrast by restrict-
ing the number of actual experiments and reducing the num-
ber of animals sacrificed.

4 Discussion
We have proposed a method for creating digital mouse phan-
toms for a small animal optical imaging system design from
an MRI data set by performing extensive comparison of light
transport with two diffusion models on a cylindrical geometry.

source in the cylindrical phantom position 1 �---�, position 2 �—�, and
.5 mm−1, �a=0.01 mm−1 �in the background�, �a=0.1 mm−1 �in the
ide of the source �located at 0 mm�. Note the uniform height of the
b� Excitation fluence on the boundary near the source. Note that the
nce on the boundary near the source. Detectability is tenfold higher
e mouse phantom.
point
r �s�=0
either s
dary. �
n flue

on in th
We have identified two principle sources of variation: �a� op-
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ical properties of the biological medium—a set of noise pa-
ameters that cannot be controlled, and �b� the boundary of
he phantom that may be controlled through improving the
ccuracy of the geometrical model. To the best of our knowl-
dge, this is the first reported effort at standardizing imaging
ystem performance through the assessment of sensitivity of
imulated fluence to these variations in a small animal model.
he method is sufficiently general and can be extended to
ther optical imaging applications.

However, there are several ways in which we could poten-
ially improve the design and accuracy of the digital phantom
nd extend its range of performance. An important limitation
f our work is that the phantom has been created from a single
RI data set through manually chosen parameters for the

mage processing steps. A generalized phantom should be ide-
lly created from multiple data sets processed through semi-
utomatic or automatic algorithms for boundary extraction.
RI images are prone to variability in intensities arising out

f field inhomogeneity, magnet strength, and varying acquisi-
ion protocols. Automatic analysis of MRI images is an inher-
ntly challenging problem. It is, therefore, reassuring that
mall variations in boundary do not significantly alter the
omputed fluence. Our digital phantom consists of only the
oundary. It would be useful to extract the anatomical struc-
ures within the mouse to create a more detailed mouse phan-
om. In optical imaging with anatomical priors of the brain,

RI images are used as a guide to delineate white and gray
atter and CSF.19 Segmenting internal organs of the mouse

rom MRI data sets is a problem that is significantly more
omplex than extracting the mouse boundary. A detailed
hantom would enable a more intricate modeling of light
ransport through tissue layers and allow for simulating per-
usion of contrast agents and pharmacokinetics through opti-
al techniques.

The Digimouse26 mouse atlas is represented by an isotro-
ic voxel size of 0.1 mm for a matrix size of 380�992
208. However, in the application of Digimouse to simula-

ion of bioluminescence, Dogdas et al. have down-sampled
he atlas to a matrix size of 95�248�52 with a voxel size of
.4 mm. We have limited the mesh resolution of our digital
hantom to 0.98 mm−1 primarily due to constraints imposed
y the hardware. If we moved to a paradigm where we could
erform adaptive meshing of the phantom, instead of driving
he FE mesh with a single resolution, we could define a fine

esh close to the source and near sharp gradients in topology
o mimic rapid changes in the fluence profile and meet the
riteria for accurate simulation of optical transport over a
ider range of tissue types with the same hardware.

Last, the phantom needs to be tested for image reconstruc-
ion in an actual imaging system for target detection through

easurements of fluorescence.
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