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Abstract. Following previous Monte Carlo simulations, we describe
in detail an example of detecting evoked visual hemodynamic re-
sponses in a human subject as a preliminary demonstration of the
novel global interference cancellation technology. The raw time series
of oxyhemoglobin �O2Hb� and deoxyhemoglobin �HHb� changes,
their block averaged results before and after adaptive filtering, to-
gether with the power spectral density analysis are presented. Simul-
taneous respiration and EKG recordings suggested that spontaneous
low-frequency oscillation and cardiac activity were the major sources
of global interference in our test. When global interference dominates
�e.g., for O2Hb in our data, judged by power spectral density analy-
sis�, adaptive filtering effectively reduced this interference, doubling
the contrast-to-noise ratio �CNR� for evoked visual response detection.
When global interference is not obvious �e.g., in our HHb data�,
adaptive filtering provided no CNR improvement. The results also
showed that the hemodynamic changes in the superficial layers and
the estimated total global interference in the target measurement were
highly correlated �r=0.96�, which explains why this global interfer-
ence cancellation method should work well when global interference
is dominating. In addition, the results suggested that association be-
tween the superficial layer hemodynamics and the total global inter-
ference is time-varying. © 2007 Society of Photo-Optical Instrumentation Engineers.
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Introduction
ear infrared spectroscopy �NIRS� and diffuse optical imag-

ng �DOI� are noninvasive technologies that can measure
unctional brain activity1–6 and have been used to study a
ariety of hemodynamic responses including vision,7–10

otor,11–14 and others,15–18 as well as fast neuronal
ignals.19–21 To detect evoked brain activity, photons must
ecessarily pass through superficial tissue layers �especially
calp and skull� when propagating to and from the cortex.
ny hemodynamic variations in superficial layers will hence
navoidably affect the measured deoxyhemoglobin �HHb�
nd oxyhemoglobin �O2Hb� concentrations.12,22–24 Cardiac
ctivity is one of the major sources, and we also expect the
emodynamic signal to vary at the respiration frequency, due
o phenomenon such as respiratory sinus arrhythmia,25 “chest
ump,”26 and the respiratory wave in arterial blood
ressure.25,27–29 Researchers have also categorized the sponta-
eous physiological low-frequency oscillations as low-
requency oscillations �LFO, vasomotor waves or Mayer

ddress all correspondence to Quan Zhang, PhD, Neural Systems Group, MGH
uilding 149, 13th Street, Rm. 2651 Charlestown, MA 02129; Tel: 617–724–

550; Fax: 617–726–4078; E-mail: qzhang@nmr.mgh.harvard.edu

ournal of Biomedical Optics 064009-
waves�, centered around 0.1 Hz, and very low frequency os-
cillations �VFLO�, at about 0.04 Hz.30 In addition, the optical
measurement of evoked brain responses is contaminated with
the preceding physiological oscillations in the vasculature in-
side the brain. The spatial origins of these interferences �either
from shallow layers or from inside the brain� are often not
distinguished, and the interferences from different layers are
normally lumped under the heading of “global interference”
or “systemic physiological interference.” Several methods
have been developed to suppress the interference in the detec-
tion of functional brain activity, including filtering, average
wave form subtraction, and others.13,16,19,31–35

Previously, we have developed a novel way to remove glo-
bal interferences based on a multiseparation probe configura-
tion and adaptive filtering.36 In this method, an HHb �or
O2Hb� measurement acquired with close source-detector
separation �reflecting hemodynamic changes in the shallow
layers� is supplied as a reference channel to an adaptive filter.
The adaptive filter converts this reference to an estimate of the
global interference; this estimated global interference is then
subtracted from the target HHb �or O2Hb� from optical mea-
1083-3668/2007/12�6�/064009/12/$25.00 © 2007 SPIE
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urements using longer source-detector separations. Our
onte Carlo simulation suggests that signals from superficial

ayers actually comprise the major component of the total
nterference, thus making it an ideal reference measurement
or adaptive filtering–based interference cancellation.36 Our

onte Carlo simulation results suggest that this method is
ery effective in suppressing such global interference and im-
roving the contrast-to-noise ratio �CNR� in evoked brain ac-
ivity detection. While simple, the algorithm is fast enough for
eal-time applications. However, its suitability and perfor-
ance on human data remains to be evaluated. Here, we de-

cribe an example case of evoked visual response detection as
preliminary demonstration of our methodology.

Materials and Methods
.1 Data Collection

he visual stimulation task was performed on a healthy, 36-
ear-old male, with no known history of neurological, psychi-
tric, or vision problems. NIRS measurements and simulta-
eous EKG and respiration recordings were collected during
ur study. Optical data was collected using NIRS1 �TechEn,
ilford, Massachusetts�, as used in previous studies.13,37 We

sed two source lasers, at 682 and 830 nm, respectively, and
wo detectors �Hamamatsu C5460-01�. The lasers were inten-
ity modulated by an approximately 5-kHz square wave and
n in-phase/quadrature-phase �IQ� detection scheme. The final
nalog output was low-pass-filtered at 3.4 Hz using a second-
rder RC low-pass filter. An EKG was measured using chest
eads, and respiration rate was collected using a piezo-electric
espiration sensor �Pneumotrace II, UFI, Morro Bay, Califor-
ia� tied at the upper abdomen, and the measurements were
igitally low-pass filtered at 1 Hz �eighth-order IIR filter�.
eart rate �HR� was calculated from the EKG recordings,
one on a beat-to-beat basis from QRS waves. First the de-
ivative of the EKG signal is calculated, and then a threshold
s applied to the EKG derivative so that QRS waves can be
etected. The threshold is manually selected—it can be either
or the rising or falling edge of the QRS wave to get the best
esult. Errors from this straightforward QRS detection will be
orrected manually, and the calculated beat-to-beat HR will
hen be digitally low-pass filtered at 1 Hz �sixth-order IIR
lter�. The optical signals, together with the EKG and respi-
ation measurements, were simultaneously sampled at 200 Hz
nd transferred to a computer using a 16-bit A/D conversion
Measurement Computing, PCM-DAS16D/16�; thus, all sig-
al channels were strictly co-registered to enable accurate
omparison of timings of event onsets.

The lights from two diode lasers were combined using a
ifurcated glass fiber bundle with a nominal 2.7-mm core
iameter �Fiberoptics Technology, prototype�. Detector fibers
ere glass fiber bundles, also with 2.7-mm core diameter.
he optical fiber bundles �optodes� were attached to a flexible
iece of plastic that was attached to a black Velcro headband
hat fastened snugly around the head of the subject. Soft black
elcro was also used to absorb stray light beneath the probe.
he combined light of two wavelengths were in contact with

issue in one source location �S in Fig. 1�a��, and exiting light
as collected from two detector locations, 1.5 cm and 4.5 cm
rom the source, respectively �D1 and D2 in Fig. 1�a��.

ournal of Biomedical Optics 064009-
During the visual task, the multichannel NIRS probe was
positioned 2 cm lateral and parallel to the subject’s midline,
over the primary/secondary visual cortex �confirmed by an
existing MRI scan�, with the source 1 cm inferior to the inion
�Fig. 1�a��. MRI images also show that the thickness of the
scalp and skull at this location is approximately 2.1 cm, and
with this probe configuration, photon propagation theory sug-
gests that measurement from S-D1 will be sensitive to scalp
and skull changes, while measurements from S-D2 will be
sensitive to scalp, skull, CSF, vision cortex, and some white
matter regions. The subject sat upright in a comfortable chair
in a dark and quiet room facing a laptop screen. The stimulus
consisted of a counterphased, 100% contrast radial checker-
board �5-Hz luminance reversals� covering approximately
20 deg of the visual field �Fig. 1�b��. This was alternated with
a mean-luminance, uniform field with a central fixation cross
�Fig. 1�c��. One 8-min run of 16 blocks was presented, where
each block consisted of checkerboard oscillation for 15 s, fol-
lowed by the fixation background for 15 s; thus, the base
visual stimulation frequency was 0.033 Hz.

2.2 Data Analysis
The raw 200-Hz optical data were offset-corrected and further
digitally low-pass filtered, in addition to the instrument filter,
using a 1.25-Hz, sixth-order Butterworth filter. The optical
measurements for each channel were converted to relative
changes in the concentration of HHb and O2Hb using the
modified Beer-Lambert law.38–41 Concentration measurements
were then bandpass filtered using a sixth-order Butterworth
low-pass filter at 1.25 Hz in series with a sixth order Butter-
worth high-pass filter at 0.004 Hz �to remove any slowly
drifting signal components� and then down-sampled to 20 Hz.
Based on our previous Monte Carlo simulations with common
head structure and tissue optical properties,36 we chose DPFs
of 5.4 and 7.0 for S-D1 and S-D2 at 690 nm, and 5.1 and 6.6
for S-D1 and S-D2 at 830 nm. �We initially set all DPFs to
6.0 for the data analysis, and the results closely mirrored the
results reported here, suggesting insensitivity to DPF errors.36

Fig. 1 �a� Probe configuration for the vision test. �b� Vision stimula-
tion: alternating counter-phased radial checkerboard. �c� Rest period:
uniform field with a central fixation cross.
The reported DPFs are based on more realistic Monte Carlo

November/December 2007 � Vol. 12�6�2
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stimates of DPF differences across wavelengths and separa-
ions.� The time series of O2Hb concentration changes ac-
uired from both source-detector pairs �S-D1 and S-D2� were
ed into the adaptive filter. �HHb was filtered similarly but
eparately.� The adaptive filter used a finite impulse response
FIR� and transversal structure �tapped delay line�, with 100
odes �“weights”�. The Widrow-Hoff least-mean-squared
LMS� adaptation algorithm was used to optimize the filter
oefficients on a sample-by-sample basis. The details can be
ound in our previous report.36 The convergence control pa-
ameter was �=0.0001. In order to speed the convergence,
e prenormalized the target and the reference data sets by
ividing by their estimated standard deviation so that both
ime series have a standard deviation of approximately 1. Af-
er the adaptive filtering, the quantitative values of the filtered
esults were recovered by multiplying back the standard de-
iation. The initial guess of the adaptive filter weights was
1 0 . . .0�—in other words, we assume that the shape of the
lobal interference and the S-D1 measurements are identical
t the beginning of the adaptive filtering. If this initial guess
ere to remain constant, it would be similar to Saager and
erger’s approach, which assumes that the entire S-D1 time

eries can be least-squares fit to and subtracted from the S-D2
easurement.35 Our approach differs in that �1� we assume a

inear mapping between S-D1 and S-D2 and that this mapping
s dependent on recent history �here, 100 weights instead of
he entire time series, making the approach particularly suited
o real-time applications�, and �2� that this mapping is allowed
o change over time, which in principle allows us to handle
onstationary time series �see Sec. 4.2�.

As in previous NIRS studies, we performed block ave-
aging using nonoverlapping portions of the data set triggered
n stimulus onsets �averaging windows 2 s prior to checker-
oard onset and 28 s after the onset of each block of visual
timulation�.

After adaptive filtering, in order to retrieve the quantitative
unctional hemodynamic changes in the deep cortex layer in
ur previous Monte Carlo simulation study,36 we calculated a
ensitivity correction scaling factor. This is done by introduc-
ng a known perturbation into the blood content of the simu-
ated gray matter layer only and then calculating the blood
ontent changes using the surface measurements and the
BLL. The sensitivity correction factor is defined as the ratio

f true blood concentration change to measured blood volume
hange. In the simulation with general physiological param-
ters, this sensitivity correction factor is calculated to be 27.5
or O2Hb and 26.4 for HHb, and we assumed the same cor-
ection factor in this human study.

Power spectral density �PSD� was used to identify the
omponents and vision stimulation–associated changes in the
emodynamic responses or other physiological signals. PSD
as estimated in MATLAB �based on Welch’s averaged, modi-
ed periodogram method, with a Hanning window for
moothing�. In order to find peaks that are statistically signifi-
ant, we chose a confidence interval of 0.95 and calculated the
pper and lower bound of the power spectrum within this
nterval. Usually, we say a peak can be identified if the lower
ound of the peak is above the averaged surrounding noise

oor shown in the PSD.

ournal of Biomedical Optics 064009-
With PSD, we can also perform a quantitative CNR analy-
sis. For human subject data, we cannot totally separate signal
and noise. Thus, we roughly calculate the signal power by
integrating the power �in linear scale� from the PSD over the
“signal bands,” which are the small frequency segments sur-
rounding the stimulation frequency and its second harmonic.
This way, the evoked brain activity peak will normally be
included. We integrate the rest of the power spectrum �“noise
bands”� to get the noise power. The unavoidable error in this
calculation includes real signal power in the noise band and
actual noise power in the signal bands. The CNR is then cal-
culated as the square root of the ratio of signal power to noise
power. It is worth mentioning that since the PSD is calculated
using the whole data set �9674 points at 20 Hz sampling rate,
no overlap in the PSD segmentation�, the CNR calculated
based on this PSD is the result of averaging the whole data
set, not the CNR for a single stimulation.

3 Results
3.1 Origins of Global Interference: Comparing

Optical, Respiration, and Cardiac
Measurements

The respirometry and EKG were recorded simultaneously
with optical measurements in order to help us determine the
origins and understand the nature of the global interferences.
The raw optical measurements �light intensity� at 830 nm col-
lected from the “far” detector �S-D2 with 4.5-cm source-
detector separation� and from the “near” detector �S-D1 with
1.5-cm source-detector separation� are shown in Figs. 2�a�
and 2�c�, respectively. In order to more clearly view the de-
tails, such as the temporal correlation between different chan-
nels, we have shown here only 200 s of data. The associated
power spectral densities are shown in Figs. 2�b� and 2�d�. The
simultaneously recorded respiration signal �left y axis with
arbitrary unit, indicating the movement of the upper abdo-
men� and heart rate �right y axis, calculated from the EKG�
are presented in Fig. 2�e�, and the associated PSD is shown in
Fig. 2�f�. The insets in Figs. 2�b�, 2�d�, and 2�f� show the
details of PSD at frequencies less than 0.2 Hz. Each PSD was
estimated using all 96,736 data points so that more details can
be seen at the low-frequency end. To avoid possible confu-
sion, we need to point out again that the lower curve in Fig.
2�e� is the heart rate, not the EKG, and its spectrum in Fig.
2�f� is actually the spectrum for heart rate variation �HRV�.

In Figs. 2�a� and 2�c�, we see that both optical measure-
ments consist of a slow variation and a fast oscillation. The
fast oscillation is obviously due to cardiac activity, it co-
registers strictly with the EKG �not shown�, and the inset in
Fig. 2�a� shows an enlarged data segment to demonstrate the
temporal details of these fast signal fluctuations. The PSD of
the optical signals, shown in Figs. 2�b� and 2�d�, show that the
cardiac activity peaks at 1.1 Hz, and its second harmonic at
about 2.2 Hz is also very obvious.

From the respiration PSD �the inset in Fig. 2�f��, we
see that the principal respiration frequency is at 0.16 Hz.
However, for both optical measurements �seen in the insets
in Figs. 2�b� and 2�d��, the major low-frequency peak is
�0.1 Hz �with a 0.16-Hz peak appearing about 10-dB down,

and among peaks that might be artifacts�. The heart rate PSD

November/December 2007 � Vol. 12�6�3
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inset in Fig. 2�f�� helps in explaining the origin of this
.1-Hz peak in optical channels. The heart rate PSD shows
.1 Hz and 0.16 Hz as the top two principal peaks, with the
.1-Hz peak as the highest and 2 dB above the 0.16-Hz peak.
The latter is obviously due to the respiratory sinus arrhyth-
ia.� This suggests that the 0.1-Hz oscillation in the optical

hannels is physiological rather than artifact. Since 0.1 Hz is
he prototypical LFO frequency, we suspect that this oscilla-
ion in the hemodynamics shown in the optical channels is
asomotor waves, and the 0.1-Hz peak in the heart rate PSD
s possibly an associated change in a vasomotor reflex. Full
eparation of component signals is difficult in this subject,
ecause the subject’s respiration rate is relatively low, and we
ack other more direct measurements such as invasive arterial
ressure.

Optical measurements from far and near channels are very
imilar, actually a linear correlation analysis that shows that
hey are highly correlated �r=0.91, p�10−20�. The fact that
he target �far� measurement and reference �near� measure-
ent are highly correlated and that they all demonstrate major
SD peaks at heart beat and LFO frequencies indicates that

ig. 2 �a� The raw optical measurement at 830 nm from S-D2 with 4.5
he heartbeats�, and �b� its power spectral density magnitude �the inse
t 830 nm from S-D1 with 1.5-cm source-detector separation, and �d
oltage output from the respiration sensor, and the bottom curve is th
f� their power spectral density. The 1, 2, and 3 in �a�, �c�, and �e� indi
he optical measurement from S-D2 is heavily contaminated

ournal of Biomedical Optics 064009-
by global interference �measured by S-D1�, as was previously
derived via Monte Carlo experiments.

We performed a T-test on the 16 averaged heart rates dur-
ing vision stimulation periods �67.0±2.5 bpm� and the 16
averaged heart rates during rest periods �66.4±2.5 bpm�. The
change was not significant �T�30�=−0.7, p=0.24�, suggest-
ing no obvious heart rate increase or associated hemodynamic
interference due to the visual stimulation itself.

To summarize, the PSD in the optical and physiological
measurements suggests that the systemic interference comes
from mixed sources, with cardiac activity and LFO �Mayer
waves or vasomotor waves, judging from the frequency� be-
ing dominate. The visual stimulation does not cause any heart
rate increase.

3.2 O2Hb Changes during Visual Stimulation
Changes in O2Hb during visual stimulation are shown in
Fig. 3. Here, Figs. 3�a� and 3�b� represent the target measure-
ment of O2Hb calculated from the raw “far” signal and its
block average. Figures 3�c� and 3�d� show the reference

urce-detector separation �the inset of an enlarged data segment shows
s the details at frequencies �0.15 Hz�. �c� Raw optical measurement
wer spectral density magnitude. �e� The top curve is the normalized
rate in beats per minute �bpm�, calculated from EKG recordings, and
sequence of an example wave in respiration, heart rate, and optical.
-cm so
t show
� its po
e heart
cate the
O2Hb �“near” signal� and its block average. Although the
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arget data set was expected to contain an increase in O2Hb
ollowing stimulus onset �and concomitant decrease following
timulus offset�, neither the raw time series nor the block
verage show any obvious expected signal change. We hy-
othesized that the global interferences obscured the expected
rain-related O2Hb change. The fact that the signal variations
n the target O2Hb closely match those of the reference O2Hb
which should contain no visual response� suggested that in-
eed global interference may dominate the target data set.

The target data set after adaptive filtering is shown in
igs. 3�g�–3�j�. Figures 3�g� and 3�h� show the raw adaptive
ltered result with its block average, and 3�i� and 3�j� show

he filtered result following sensitivity correction. Comparing
igs. 3�g� and 3�h� �or their sensitivity-corrected versions in
�i� and 3�j�� with 3�a� and 3�b�, we see that after adaptive
ltering, both LFO and cardiac interference are substantially
educed �actually, 80% of the signal variation was removed�,
hile at the same time, the CNR of the hemodynamic re-

ponses to vision stimulation increased dramatically. Both the
ime series’ and the block averaged results show an expected
ncrease following stimulation onset and return to baseline
uring rest periods, with temporal changes appropriately as-
ociated with the stimulation paradigm. For the detected vi-
ual response shown in Fig. 3�j�, we see a uniphase increase
tarting from approximately 2 s after stimulus onset, which
lateaus at about 9 s. The response remains steady until after
he visual stimulation ends �we suspect that the hump at about

ig. 3 Adaptive filtering to remove global interference and recover ev
ource-detector separation, and �b� its block averaged result. �c� and
ion. �e� and �f� Low-pass filtering result for the target measurements
daptive filtering result with sensitivity correction.
7 s is artifact�, and begins to decrease at about 20 s, recov-

ournal of Biomedical Optics 064009-
ering to baseline at about 25 s. Although unlike in our previ-
ous Monte Carlo simulation study, here we do not have a true
O2Hb visual response value to compare with, the quantitative
O2Hb changes match previous reports.9,10

We also compared the adaptive filtering result with the
traditional low-pass filtering result. O2Hb acquired from the
far detector �S-D2, Fig. 3�a�� is low-pass filtered with an
eighth-order Butterworth filter with 0.125 Hz bandwidth, and
the result is shown in Figs. 3�e� and 3�f�. From Fig. 3�e�, we
can see that this low-pass filter effectively removes the car-
diac oscillations; however, systemic variations due to LFO
remain. After block averaging, seen in Fig. 3�f�, the systemic
interference was further suppressed; however, it is still too
large to reveal clear evoked brain activity. Comparing with
the final adaptive filtering block averaged result �Fig. 3�j��, we
can see that adaptive filtering removes the global interference
and recovers the evoked brain activity much more effectively.

The CNR improvement from adaptive filtering can be
quantitatively estimated using power spectral density tech-
niques. Figure 4�a� shows the PSD of the target O2Hb before
adaptive filtering, in which we see two dominating peaks at
about 1 Hz and 0.1 Hz, which correspond to cardiac activity
and LFO. Figure 4�b� shows the details of the PSD of target
O2Hb in 0 to 0.12-Hz range �solid line�, together with its
upper and lower bound calculated at a confidence interval of
0.95. In Fig. 4�b�, using the average local noise level �hori-

rain activity. �a� Target O2Hb measurements from S-D2 with 4.5-cm
rence measurements from S-D1 with 1.5-cm source-detector separa-
d �h� Adaptive filtering result for the target measurement. �i� and �j�
oked b
�d� Refe
. �g� an
zontal dashed line; averaged PSD magnitude in the 0 to

November/December 2007 � Vol. 12�6�5
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.12 Hz range� as the detection threshold �to compare with
he lower bound of the PSD�, we can see several peaks above
his threshold �e.g., at 0.006 Hz, 0.012 Hz, 0.043 Hz,
.066 Hz, 0.104 Hz, and 0.1 Hz�, the LFO peak being the
ost significant one, about 12 dB above. A peak of 0.033 Hz,

he expected visual stimulation frequency, is actually among
etected peaks; however, it is the second smallest compared
ith other detected peaks, only 7 dB above the threshold, and
ifficult to distinguish among the other detectable peaks as
eal or artifact. After adaptive filtering �Fig. 4�c��, the physi-
logical interference due to LFO and cardiac activity peaks
as significantly reduced. From the details presented in
ig. 4�d�, we can see that the noise floor �horizontal dashed

ine� was 10 dB less than the original, while the visual re-
ponse peak remains �compared with Fig. 4�b��. Now only
wo peaks can be detected �0.010 Hz and 0.033 Hz�, and the
eak at 0.033 Hz, corresponding to vision stimulation, is the
ost significant peak and is 18 dB above the local noise floor.
If we choose the signal bands of the vision response to be

oughly 0.028 to 0.039 Hz �base band� and 0.061 to 0.072 Hz
second harmonic�, and the rest of the spectrum in the 0 to
0 Hz range is the noise bands, our CNR analysis shown that
daptive filtering doubled the CNR �from 40.2% to 80.8%�.

ig. 4 �a� and �b� present the power spectral density of O2Hb befo
ource-detector separation� before adaptive filtering. �b� shows th
SD magnitude, and the dotted line is the upper and lower bound c
ates the average noise level �averaged PSD magnitude in the 0 to 0
nd �b�.
he very low frequency of �0.01 Hz was also preserved. It

ournal of Biomedical Optics 064009-
remains to be determined whether signal variation at this fre-
quency range is real or artifact.

3.3 HHb Changes during Vision Stimulation
The adaptive filtering results for HHb are shown in Fig. 5. As
for Figs. 3�i� and 3�j�, Figs. 5�i� and 5�j� again utilized sensi-
tivity correction. The PSD result is shown in Fig. 6.

One obvious difference in the HHb data as compared to
O2Hb is that for HHb, the interference was relatively small
and the hemodynamic response was visible before adaptive
filtering �Figs. 5�a� and 5�b��. In addition, the signal from
the near detector �shallow layer hemodynamics� differs more
substantially from the far detector signal �deep-layer
hemodynamics�—that is, the far detector HHb signal was not
dominated by synchronized global interference. We suspect
that interferences here have local origins and thus are different
at different detector locations. This explanation is supported
by the PSD analysis. In the PSD of target HHb measurement
�Figs. 6�a� and 6�b��, we actually see no obvious LFO, respi-
ration, or cardiac activity peaks. In other words, the major
global interference sources in HHb are not significant. In Sec.
5, we discuss why in this subject HHb did not demonstrate
obvious global interference peaks, as previously observed in

tive filtering. �a� is the PSD of O2Hb acquired from S-D2 �4.5-cm
ils of the PSD in the 0 to 0.12-Hz range. The solid line is the
ed at a confidence interval of 0.95. The horizontal dashed line indi-
range�. �c� and �d� present the filtered result in the same way as �a�
re adap
e deta
alculat
.12-Hz
O2Hb.

November/December 2007 � Vol. 12�6�6
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Since the amount of interference in the target data set is
elatively small and the visual response and the global inter-
erence are mostly independent of each other, the adap-
ive filtering did not substantially alter the signal. As seen in
igs. 5�g� and 5�h�, the overall amplitude of variations after
daptive filtering have only slightly changed �17% smaller�,
nlike the O2Hb adaptive filtering results, where 80% of the
ariations in the target data set were removed �Figs. 4�g� and
�h��. Comparing the results before and after adaptive filtering
Figs. 5�a� with 5�g�, respectively�, we see that the visual
esponse is clear in both, although adaptive filtering appears
o slightly reduce the signal and increase noise. This can be

ore clearly seen in the PSD analysis in Figs. 5�b� and 5�d�,
here we see a 5.9-dB reduced peak at 0.033 Hz, and a
.89-dB elevated noise level. The previous CNR analysis
hows a 35% reduction of CNR after adaptive filtering.

When comparing Figs. 5�i� and 5�j� with the low-pass fil-
ering result shown in Figs. 5�e� and 5�f� �which use an
ighth-order Butterworth filter with 0.125-Hz bandwidth�, we
an see that the low-pass filtering result is smoother. The
hape of the response in 5�j� �onset, rise, offset, and fall times�
as less low frequency fluctuation and is slightly more tem-
orally consistent with prototypical hemodynamic responses
han that in Fig. 5�f�, but it is unclear if this is because of

ig. 5 Adaptive filtering to remove global interference and recover e
ource-detector separation, and �b� its block averaged result. �c� and
eparation. �e� and �f� Low-pass filtering result for the target measurem
j� Adaptive filtering result with sensitivity correction.
daptive filtering.

ournal of Biomedical Optics 064009-
For the filtered and sensitivity-corrected visual response
shown in the block averaged and sensitivity corrected results
in Fig. 5�j�, we see a uniphase decrease starting from approxi-
mately 1 s after the onset of the stimuli, which continues until
about 8 s, when it reaches a valley. The signal remains at this
value until after the visual stimulation ends, and it begins to
increase at about 21 s, again recovering to baseline at about
25 s. These quantitative HHb changes due to vision stimula-
tion also match those found in previous reports.9,10

The improvement from adaptive filtering on HHb in this
case is not obvious. Although the shape of the filtered results
�Fig. 5�j�� seems to agree more with expectations compared
with Fig. 5�b� without adaptive filtering, it is unclear if this
slight improvement is really from adaptive filtering, and the
CNR estimated using PSD is actually reduced �from 66.5% to
43%�. This suggests that in the cases where hemodynamic
signals demonstrate obvious functional brain response and its
PSD demonstrate no obvious global interference sources,
adaptive filtering may be unnecessary.

4 Comparison of Shallow Layer Hemodynamics
and Estimated Global Interference

The performance of our method depends on whether the shal-

brain activity. �a� Target HHb measurements from S-D2 with 4.5-cm
ference HHb measurements from S-D1 with 1.5-cm source-detector
g� and �h� Adaptive filtering result for the target measurement. �i� and
voked
�d� Re
ents. �
low layer hemodynamics acquired from S-D1 and global in-
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erference in the visual response detection acquired from
-D2 are correlated. When they are well correlated, the global

nterference can be optimally canceled, and the CNR of the
voked hemodynamic response is improved. A further ques-
ion is whether the relationship is static or dynamic. Since it is
ifficult to precisely separate global interference from the raw
-D2 blood content time series, and since the visual response
e acquired after adaptive filtering seems quite reasonable,
e chose to estimate the global interference by subtracting the
isual response �Fig. 3�g�� from the raw time series with both
nterference and visual response embedded �Fig. 3�a�� and use
he residual as global interference. Although it is not math-
matically strict �the “estimated global interference” is actu-
lly the component in the target signal that correlates most
ith the reference signal, picked up by the adaptive filter�, the

act that we subtract a decent visual response makes this es-
imation acceptable, since generally the target signal is the
ombination of visual response and interference.

.1 Stationary Comparison
n Fig. 7, we compare our two raw concentration time series
irectly by mean-subtraction and dividing each time series by
ts own �temporal� standard deviation. Only a small segment
s shown for clarity. Here, the normalized O2Hb concentration
cquired from the near measurement �S-D1� is shown as
he dashed line and the computed O2Hb global interference

ig. 6 �a� and �b� present the power spectral density of HHb befo
ource-detector separation�. �b� shows the details of the PSD in the 0
s the upper and lower bound calculated at a confidence interval of 0
SD magnitude in the 0 to 0.12-Hz range�. �c� and �d� present the fil
Fig. 3�a� minus Fig. 3�g�� is the solid line. As shown, the

ournal of Biomedical Optics 064009-
two time series are highly overlapping. Actually, a linear re-
gression of the two measurements �Fig. 8�a�� shows that the
correlation coefficient between these two time series is 0.96
�p�10−20�. Although the estimated global interference may

tive filtering. �a� is the PSD of HHb acquired from S-D2 �4.5-cm
2-Hz range. The solid line is the PSD magnitude, and the dotted line
e horizontal dashed line indicates the average noise level �averaged
sult in the same way as �a� and �b�.

Fig. 7 Comparison of normalized shallow-layer hemodynamics
re adap
to 0.1
.95. Th
tered re
�dashed line� and estimated global interference �solid line� in O2Hb.
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e different from real global interference, this correlation
omparison demonstrates the similarity of the reference signal
o the target signal after the visual response is removed and in
urn explains why adaptive filtering removes the interference
erm very effectively.

.2 Dynamic Comparison
ur previous analysis suggests that there is reasonably a lin-

ar relationship between the shallow layer hemodynamics and
lobal interference; however, this relationship changes with
ime. In Fig. 8�b�, one segment of global interference is plot-
ed against the shallow layer hemodynamics �from 250 s to
70 s; both are smoothed using a sixth-order 0.25-Hz Butter-
orth filter�, and the arrow shows how the data moves with

ime. The data did not strictly follow the line. Thus, we per-
ormed short-term linear regressions—that is, we performed
inear fits using only 100 data points at a time �5 s� and slid
he data window through the entire data set, with the esti-

ated global interference as the independent time series and
he near O2Hb measurement as the dependent variable. The

ig. 8 �a� Linear regression between the global interference in O2
ontinuous plot of one 20-s segment. The arrow indicates the directio

ig. 9 Short-term linear regression coefficients. The top curve is the

inear regression slope, and the bottom curve is the intercept.

ournal of Biomedical Optics 064009-
resulting linear fit slope and intercept values oscillate over
time �Fig. 9�. This dynamic feature can also be viewed in the
adaptive filtering, where the node is adjusted at a point-by-
point basis and is following the slow nonstationary variations
of the time series to optimize the interference cancellation.
The update of the first node as a function of time is presented
in Fig. 10.

In this case study, the fact that the shallow layer hemody-
namic changes correlated well with the global interference
and that adaptive filtering in general follows the nonstationary
changes in the time series explains why our method should
work well in suppression of the global interference and im-
prove the CNR in the evoked brain activity detection.

5 Discussion
This case study provides a preliminary demonstration of the
potential effectiveness of our combined adaptive filter/
multidistance methodology for global interference reduction.
From this study, we see the effect of adaptive filtering both in
the situation when global interference dominates �e.g., in
O2Hb� and when the global interference does not dominate

m S-D2 �vision response subtracted� and O2Hb from S-D1. �b� A
hange as a function of time.
Hb fro
Fig. 10 Adaptive filtering node update �first node�.
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e.g., in HHb�. Clearly, adaptive filtering is substantially more
seful in the former case. The key for adaptive filtering to
ork is that the interference must be common to both the

ignal channel and the reference channel. In principle, cardiac
ctivity, respiration, and vasomotor waves should be common
n the whole circulation system; however, because of the het-
rogeneity of the vasculature in tissue and the location of the
robe �e.g., relative to large vessels�, together with local
hanges at each optode, different optical measurements may
e affected by different types of interference to a different
egree, and not all optical measurements are dominated by the
ame type of interferences. To maximize the benefit of adap-
ive filtering, one must first determine whether a given signal
s substantially affected by global interference common to
oth the signal channel and the reference channel �e.g., via
SD comparison�. If the target channel shows interference
imilar to the reference channel, then apply the adaptive filter.
therwise, skip adaptive filtering.

It was interesting to observe that HHb �found mostly in
enous compartments� exhibited little global interference,
hereas the global interference in O2Hb �present in all com-
artments� was substantial. This makes sense in light of signal
requencies, which indicate that the interference was largely
asomotor or Mayer waves, which are arterial pressure
aves.25 Since this is only a case report and the goal is to
emonstrate the methodology, no physiological generaliza-
ions should be drawn �N=1�. For example, the subject in this
ase report showed an HHb response but not an O2Hb re-
ponse after block averaging. We believe this occurred be-
ause of excessive physiological interference of the overlying
ayers and predominantly in O2Hb, a problem which was sub-
tantially resolved by adaptive filtering. In other studies,
roup averages normally show O2Hb and HHb responses,
ith a certain amount of variability. Results from individual

ubjects, however, are even more variable, sometimes show-
ng clear responses in both O2Hb and HHb, sometimes only
n one Hb species, and sometimes in neither.

The sensitivity correction factor is a constant that converts
he evoked brain hemodynamics acquired from surface mea-
urements and MBLL to quantitative blood content changes
n the cortex. Based on the photon transport theory, this con-
tant changes with parameters such as the probe configuration
nd dimensions and the optical properties of different layers
f the head. Since not all this information is known in our test,
rrors in the assumed sensitivity correction number in our
tudy are unavoidable. However, since the focus of our study
s to demonstrate the effectiveness of adaptive filtering by
ooking at the contrast-to-noise changes, and this constant
hanges the quantitative results of the �HHb� and �O2Hb� but
ot the CNR �this sensitivity correction factor is canceled in
he CNR calculation�, the conclusions of this case study
hould not be affected by the error in the sensitivity correction
actor.

The overall performance of this adaptive filtering approach
o removing global interference during in vivo applications
epends on whether the shallow layer hemodynamics provide
good estimate of the global interference in the target data

et. According to photon transport theory, optical measure-
ents are more sensitive to superficial layers, and we have
emonstrated using Monte Carlo simulation that hemody-

ournal of Biomedical Optics 064009-1
namic changes in the superficial layers is the major compo-
nent of the global interference in evoked brain activity detec-
tion. Furthermore, since the blood vessels for the superficial
and deep layers are connected and can be closely traced back
to the same origin, namely, the common carotid arteries, one
might expect hemodynamics in these layers to be reasonably
correlated. Thus, it would seem to be a reasonably general
principle that the scalp and skull hemodynamics acquired us-
ing optical measurements with short source-detector separa-
tion should provide a good estimate of the global interference
in measurements of deeper layers. The observed correspon-
dence between shallow layer hemodynamics and global inter-
ference in this case study explains why this can work on hu-
man subjects when global interference dominates.

In addition, since living human tissue is a very nonstation-
ary system, we expect the relationship between the shallow
layer hemodynamics and the global interference to change
with time, as observed in this case. The adaptive filtering
method assumes that there exists a linear mapping between
the reference and the target data set. This mapping is allowed
to change, but the change needs to be “slow enough” for
adaptive filtering to follow. This slowness depends on the
convergence of the adaptive filtering method and the magni-
tude of the mapping change. We chose one of the simplest
available adaptive filtering methods and parameter optimiza-
tion approaches �LMS�. Many other methods could be ap-
plied, with better convergence rates, while maintaining good
stability and robustness. These approaches remain to be ex-
plored, as here we sought only to demonstrate the suitability
of the approach for real physiological data.

In many applications, it is desirable to have interferences
removed in real time. In some applications, including func-
tional brain area localization and biofeedback, this real-time
feature is mandatory. The adaptive filtering method we used is
computationally trivial and hence can be easily implemented
in real-time manner. Based on the extensive knowledge base
surrounding adaptive filtering techniques, several techniques
can help improve the convergence of the adaptive filter. First,
since the convergence and stability of the LMS algorithm de-
pends on the energy of input signals, normalization �so that
both target time series and reference time series have roughly
a standard deviation of one� increases the convergence rate
and standardization of the choice of initial value of the adap-
tive filter and the step control parameter. Second, a pretest is
needed to train the adaptive filter before the real brain activity
detection can be utilized to generate a better initial guess at
node weights. From the pretest, we can estimate the amplitude
of the target measurement and reference measurement, and
these values can be used in the normalization of the two time
series. It would also allow the adaptive filter to reach a rea-
sonable value, to be used as the initial filter coefficient for the
real test. When really high filtering speed is required, such as
in some real-time imaging of brain activity, one may even
consider the normalization-subtraction method described in a
previous report �Sec. 2, Eq. �5� in Ref. 36�, where the amount
of calculation is minimized.

In Fig. 3, before filtering, the quantitative amplitude of the
concentration changes at the far separation �Figs. 3�a� and
3�b�, from S-D2� is only about half of that acquired from the
near separation �Figs. 3�c� and 3�d�, from S-D1�. This might

be due to a partial volume effect and suggests that the spatial
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rigins of the major physiological variations may be limited
o a thin, vascularized layer �e.g., the dermis layer of skin�. As
he sampling volume photon probes increase with source-
etector separation, the percentage of area with hemodynamic
ariation over the whole sampling volume decreases, and thus
he amount of O2Hb variations acquired using MBLL is re-
uced. In principle, one could compensate for such a layer
sing sensitivity correction, although this would require
nowledge of the location and thickness of that vascularized
ayer. The result in Fig. 3 also indicates that in our experi-

ent, a direct subtraction of reference signal �Fig. 3�c�� from
he target signal �Fig. 3�a�� will not work for the purpose of
emoval of global interference, because quantitatively they are
ot comparable �due to the difference in the average blood
oncentration in different tissue area, or partial volume ef-
ect�, and actually in our case, such subtraction will generate a
egative result since S-D1 detects a much larger O2Hb varia-
ion than S-D2.

The fact that our adaptive filtering dramatically removes
lobal interference and improves CNR in O2Hb in the evoked
rain hemodynamic response detection is exciting, and PSD
nalysis should be practical in helping to judge whether the
ptical measurements are global interference–dominated and
daptive filtering should be applied. However, the approach
eeds to be tested in different experimental settings and on
arger sample sizes to assess the breadth of the method utility.
or example, in this case study, the global interference and the
voked brain activity are not correlated �suggested by the
-test of heart rates at the rest and stimulation periods�, and
urther study is need to explore the results in the situation
hen the two are partly correlated. The case study described

n this paper sets the data analysis platform for future human
ubject tests.
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