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Abstract. Cancer progression is commonly accompanied by an al-
tered glucose metabolism. In general, spatially resolved imaging of
glucose metabolism and its subtle alterations might provide valuable
diagnostic information in vivo. A classical example is positron emis-
sion tomography that exploits this feature in obtaining preferential
accumulation of fluorescent analog of glucose in tumors, thereby
achieving an imaging contrast. We report a novel scaling analysis of
glucose metabolism in mammary epithelial �NMuMG� cells by de-
trended fluctuation analysis of Cerulean �cyan fluorescent protein
variant� fluorescence. Fluorescence fluctuations of Cerulean are rea-
soned to be indicative of dynamic pH changes associated with glu-
cose metabolism. Normal parental cells and the spontaneously trans-
formed �cancerous� NMuMG cells displayed robust scaling exponent
that reflects nonrandom fluctuations in Cerulean fluorescence. Acute
dependence of cancer cells on glycolysis as compared with normal
cells is exploited to yield a statistically significant difference in scaling
exponent, thereby providing discrimination between normal and can-
cer cells in vitro. By careful design of experiments in vivo, the pro-
posed scaling approach might even have diagnostic potential for early
detection of cancer lesions in small animal models. © 2008 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2928154�
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scaling; glucose metabolism; cancer; fluorescence lifetime imaging �FLIM�.
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Introduction

characteristic property of invasive cancers is altered glucose
etabolism.1 Biochemical assays for measuring this impor-

ant metabolic activity have given useful kinetic information
n a variety of cancers. However, the precise regulatory dy-
amics of glucose metabolism in intact living cells is far from
lear. Studies have indicated that there are short-term and
ong-term changes in pH in various organelles �cytosol, mito-
hondria, lysosomes, etc.� during substrate metabolism and
poptosis.2,3 Living cells tightly regulate pH homeostasis in
ormal conditions as well as under stress. One of the bio-
hemical hallmarks of tumors is up-regulation of glycolysis
ven in the presence of oxygen �aerobic glycolysis or War-
urg effect�, thereby leading to increased lactic acid produc-
ion as compared to normal, untransformed cells.4 This led us
o hypothesize that single-cell pH measurements during glu-
ose metabolism may be valuable in assessing differences be-
ween normal and cancer cells.

In this paper, we have systematically characterized fluores-
ence intensity and lifetime kinetics of an improved version
f cyan fluorescent protein5 �Cerulean� in mammary epithelial
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cells during glucose metabolism. We recently reported adap-
tation of a nonlinear dynamical scaling analysis in a single-
cell imaging paradigm where we observed that liver cells dis-
played complex dynamics and scaling behavior in redox
fluctuations and free radical fluctuations.6,7 Here, we extend
this novel application for gaining insight into the regulatory
nature of glucose metabolism in normal and transformed �can-
cerous� mammary epithelial cell lines. For this scaling analy-
sis, we have exploited the fact that fluorescent proteins exhibit
fluorescence fluctuations of the order of milliseconds in a pH-
dependent as well as conformation-dependent manner.8 To-
gether, our data reveal complex dynamics in living cells mani-
fested as regulatory time correlations in glucose metabolism.
Initial theories for understanding glycolytic-flux control held
the view that “rate-limiting enzymes” such as phosphofruc-
tokinase determine the entire metabolic flux; however, re-
evaluation by metabolic control analysis has confirmed that
control is generally distributed, and effective physiological
control of metabolic regulation can be shown to involve mul-
tiple sites simultaneously through action on a number of
enzymes.9 These recent observations point to a more complex
network for glucose metabolism rather than an apparently
“linear” array of enzymes. Our long-term goal is to under-
stand experimental manifestations of such network complex-
ity at the level of single cells.

1083-3668/2008/13�3�/031219/7/$25.00 © 2008 SPIE
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Materials and Methods
.1 Cell Culture
he cells used in this study are the untransformed, parental
ouse mammary epithelial cell line �NMuMG� and a sponta-

eously transformed, malignant cell line �NMuMG-ST� origi-
ally reported by Bandyopadhyay et al.10 The NMuMG cell
ine was established through spontaneous immortalization of
ormal mouse mammary epithelial cells. The “normal” cells
xhibit many untransformed features. The NMuMG-ST cells
ere isolated from these parental cell lines using a modified

oft agarose assay. In this assay, sustained anchorage-
ndependent growth potential of spontaneous transformed
ells was exploited in successful isolation of a small number
f transformed NMuMG-ST cells �“cancerous”�. These trans-
ormed cells displayed focal, multilayer growth and higher
aturation density in comparison with the normal, untrans-
ormed cells. Furthermore, these cells could also induce car-
inomas when transplanted into nude mice with an ability to
etastasize. Both the normal and ST cell lines were main-

ained in McCoy’s 5A medium supplemented with 10% fetal
ovine serum, pyruvate, vitamins, amino acids, and antibiot-
cs. Working cultures were maintained at 37°C in a humidi-
ed atmosphere of 5% CO2. For generating stable cells lines
xpressing Cerulean �a kind gift from Dr. David Piston,
anderbilt University� construct, cells were transfected with
DNA of Cerulean construct using FuGene transfection kit
Roche, Indianapolis, Indiana�. After the first day of transfec-
ion, the cells were maintained under selection pressure using
eneticin at 400 �g /ml concentration for 10 successive gen-

rations. The tenth generation stable cells were sorted using
ow cytometry for high and medium expression clones. All

he cells used in the present experiment are from the high
erulean expression batch. A separate vial of frozen cells
ere thawed and subcultured before every experiment to

void reversal of nontransformed features in NMuMG-ST cell
ines.

.2 Fluorescence Intensity and Lifetime Imaging
maging experiments were performed in a modified, home-
ade, two-photon fluorescence intensity imaging system

Olympus IX-71; Titanium; Sapphire femtosecond laser; 76-
Hz repetition rate; 60�, 1.2 NA, water immersion; 25°C�.

wo-photon emission from Cerulean was maximal at 840-nm
xcitation, and the average power at the entrance of the scan-
ing system was typically 10 to 15 mW. The actual power at
he specimen was not measured. These excitation conditions
ere optimal for minimal or no photobleaching of Cerulean
uring kinetic experiments. Fluorescence emission was col-
ected in a non-descanned detection configuration through a
80/40-nm emission filter �Chroma Technology Corp., Rock-
ngham, Vermont�. The fluorescence lifetime imaging �FLIM�
ystem employed in this study was described in earlier
ublications.11 Briefly, this system utilizes the same micro-
cope and two-photon laser that are employed for intensity-
maging experiments. However, the laser emission, from the
i:Sapphire laser is directed through a pulse picker and a
ustom-made FLIM optics so as to excite the specimen
hrough the right port of the microscope. The fluorescence
mission is directed to the streakscope �C4334, Hamamatsu
hotonics, Japan: time-resolution �50 ps� through a system
ournal of Biomedical Optics 031219-
of imaging lens and photocathode slit. The streakscope con-
sists of a photocathode surface, a pair of sweep electrodes, a
microchannel plate �MCP� to amplify photoelectrons coming
off the photocathode, and a phosphor screen to detect this
amplified output of MCP. Two beam scanner mirrors are em-
ployed for scanning along the x and y directions in the effec-
tive field of view ��40�40 �m�. Synchronous x andy scan-
ning renders a stack of �x ,y , t� streak images. This stack
contains the complete information of optical intensity as well
as the spatial and temporal information from the optical im-
age. Numerical processing of all these streak images �i.e., the
exponential decay profiles at every pixel of the raw streak
image� gives the final FLIM image. In this way, complete
information on fluorescence decays is obtained on a per-pixel
basis.

2.3 Time-Series Data Acquisition and Analysis
Time-series data for monitoring Cerulean fluorescence fluc-
tuations in living cells were acquired as follows: A field of
view with �4 to 6 cells was chosen before measurements. For
achieving high time resolution, a line scan was performed so
that the chosen line spanned all the cells. Typically, time-
series data were acquired for N=8000 time points
��30 ms / line; �58 �s /pixel�. Every line scan samples the
cell, yielding typically 100 to 300 individual time series de-
pending on the region of interest. By averaging this set of
time-series data, one. obtains a good statistical score of prob-
ing the spatiotemporal dynamics in single cells. In the present
study, we are interested in asking how glucose metabolism in
normal and cancer cells differs in different time scales �pixel
time series: ��s; lines scan time series: �ms; and frame
scan time series: �s to min�. Scaling analysis is an elegant
way to probe real-time regulatory dynamics by analyzing
subtle signal fluctuations �fluorescence fluctuations in the
present case� that attempts to look for time correlations be-
tween the signal �or process� at any instant and the same
signal �or process� at some other instant. If there are no ap-
parent correlations between various time windows, then the
underlying process can be assumed to be a “random” process.
Brownian diffusion is a classical example of a random process
�Brownian noise� with no apparent long-range time correla-
tions. On the other hand, a nonrandom scaling behavior may
indicate positive regulatory correlations that control the cellu-
lar process. Toward this end, we applied an analytical method,
namely, detrended fluctuation analysis �DFA�, originally de-
veloped by C.-K. Peng et al., to quantify statistical correla-
tions in a time-series signal.12,13 The DFA approach is a modi-
fied root-mean-square fluctuation analysis of Random
walk—to quantify statistical correlations in a nonstationary
time series signal. Figure 1 describes a schematic of this
analysis procedure. The original time series �of length N� is
first integrated and then divided into boxes of equal size �n�.
In each box, the integrated profile is fit to a polynomial that
gives a local trend in that box. Next this local trend is sub-
tracted from the integrated profile in each box, which is
termed “detrending.” Last, rms fluctuation F�n� is calculated
from the integrated and detrended signals in each box. These
steps are repeated for different values of box size �n� to gen-
erate F�n� for a broad range of scale sizes n. Intuitively, F�n�
will increase as n increases, and for scale-invariant signals
May/June 2008 � Vol. 13�3�2
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ith power-law correlations, there is a scaling relationship
�n�=n�. The scaling exponent � is a quantitative measure of

he extent of correlations in the signal. � can characterize
andomness ��=0.5 for white noise; �=1.5 for Brownian
oise� or correlations ���0.5 for anticorrelations, and 0.5
��1.5 for persistent power law–like correlations�, regard-

ess of the nature or source of the fluctuations. In other words,
he scaling function is universal and can be used to analyze
uctuations in any time-series signal. Similar crossover in ex-
onents has been noted in earlier studies of physiological sig-
als. An important advantage of the DFA algorithm over other
ime-series analysis methods is that it can also be reliably
sed for nonstationary signals since local detrending elimi-
ates the errors associated with nonstationary signals. Al-
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ig. 1 Schematic of detrended fluctuation analysis �DFA� of line scan
ime series data. �a� Representative intensity image where line scan
ime series were obtained. The xt line spans typically 300 to 512
ixels, depending on the field of view, thereby rendering the same
umber of pixel time series; scale bar=20 �m. �b� Representative time
eries data acquired with 30 ms/ line scan and N=8000 total line
cans. This renders probing the dynamics in the time scales of a few
undred microseconds �pixel dwell time� to a few hundred millisec-
nds �line scan duration� and eventually to few seconds �entire time
eries data�. We employed DFA in obtaining scaling function from the
aw time series. More details about this method are described in the
ext. In brief, DFA dissects the original time series data into many
indows with progressively increasing scale size �n� and calculates

he rms fluctuations F�n� for every scale size �n� to yield a scaling
unction F�n�=n�. The scaling exponent � is a quantitative measure of
he extent of correlations in the signal. � can characterize randomness
�=0.5 for white noise; �=1.5 for Brownian noise� or correlations
��0.5 for anticorrelations, and 0.5���1.5 for persistent power
aw–like correlations�, regardless of the nature or source of the fluc-
uations. �c� Representative scaling functions F�n�=n� for normal and
ancer cells with and without glycolytic inhibitor treatment. The inset
hows an enlarged view of the fitted region �0� log n�2.0� where the
caling exponent � was calculated.
ournal of Biomedical Optics 031219-
though this algorithm has been successfully used in quantify-
ing correlations in physiological signals such as heartbeat
dynamics and human gait dynamics, to the best of our knowl-
edge, we were the first to carry out systematic application of
this approach to understand single-cell dynamics in living
cells. More details about this algorithm can be found in Ref.
6, and source code can be obtained from the webpage of the
National Research source, at www.physionet.org.

2.4 Statistics
The data presented in this study are from at least three inde-
pendent experiments. Statistical significance was determined
by one-way ANOVA test where indicated.

3 Results
Although fluorescein-based ratiometric pH probes �e.g.,
BCECF� have a good dynamic range, we were interested in
evaluating fluorescent protein-based pH probes, since these
can be utilized in tumor models in vivo. Many fluorescent
protein mutants have shown variable pH sensitivity, with
maximum pH sensitivity being displayed by enhanced yellow
fluorescent protein.3 In this paper, we have systematically
characterized pH dependence of an improved version of en-
hanced cyan fluorescent protein, namely, Cerulean, reported
by Rizzo et al..5 Normal and cancer phenotypes can be clearly
distinguished by multilayer growth in the latter �Fig. 2�a��.
Figure 2�b� shows the pH calibration curve for Cerulean sta-
bly expressed in parental MMuMG cells. It is seen that Cer-
ulean lifetime displayed a good dynamic range of pH sensi-
tivity: ��= �13% ����17% at pH 5, and ��=13% at pH
8� as compared to the lifetime at neutral pH. We carried out
similar pH calibration experiments in cancerous NMuMG
cells and obtained identical results �data not shown�. This re-
sult is not surprising considering the fact that the pH calibra-
tion protocol required clamping of the buffer pH with nigeri-
cin. In order to test whether normal and cancer cells can show
detectable differences in cytosolic pH during various pertur-
bations that are known to alter cellular metabolism, we treated
NMuMG and NMuMG-ST cells with mitochondrial complex
inhibitors �rotenone and antimycin A� and apoptotic inducer
staurosporine. As compared to control cells maintained at
neutral pH 7, both normal and cancer cells show cytosolic
acidification, as can been seen from the reduced lifetime of
Cerulean �Fig. 2�c��. Interestingly, cancer cells showed sig-
nificantly larger acidification than the normal cells when mi-
tochondrial electron transport was inhibited.

Although this result does not conclusively demonstrate that
the observed decrease in cytosolic pH is directly due to the
effect of mitochondrial inhibitors, it is highly probable that
the observed differences between normal and cancer cells �in
the presence of mitochondrial electron transport inhibitors�
are indicative of alterations in mitochondrial response as well
as in cytosolic pH. Some earlier studies have used oxygen
depletion �either by growing cells in nitrogen atmosphere or
by chemical hypoxia� for modulating cytosolic pH. We care-
fully avoided this approach to eliminate possible artifacts in
cancer cell discrimination since hypoxia is known to have
dissimilar effects on glucose metabolism in normal and cancer
cells. Next, we wanted to see whether we could monitor real-
time lifetime modifications while the cells are metabolizing
May/June 2008 � Vol. 13�3�3
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lucose. A single pulse of glucose transiently decreases Cer-
lean lifetime, but continuous monitoring of Cerulean lifetime
fter the glucose pulse showed that normal and cancer cells
iffer in the recovery of homeostasis �Fig. 3�. Normal cells
isplayed an oscillatory lifetime profile indicative of approach
o restore the pH equilibrium. However, the cancer cells dis-
layed two larger reductions in Cerulean lifetime, clearly sug-
esting that normal and cancer cells are significantly different
n their ability to metabolize glucose at the single-cell level.
ven though we have not demonstrated a direct connection
etween glucose metabolism and pH changes, the only rea-
onable explanation of this observation can be attributed to
yperactivity of glucose metabolic machinery �either in-
reased glucose transporters or increased glycolytic rate or
oth� in cancer cells.

We next addressed the issue of regulatory dynamics of
ntracellular glucose metabolic machinery. We recently re-
orted long-range time correlations in fluorescence fluctua-
ions characteristic of subcellular regulatory dynamics.6 By
nalyzing scaling parameters in time-series data from intact
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ig. 2 Steady-state lifetime imaging in normal and cancer cells during
etabolic perturbations. NMuMG and NMuMG-ST cells stably ex-
ressing Cerulean in cytosol were imaged in a custom-made two-
hoton imaging system, �a� Representative intensity images of cells
ither untreated �control� or treated with mitochondrial complex I in-
ibitor �10 �M rotenone; 4 h; 37°C�, complex III inhibitor �10 �M
ntimycin A; 4 h; 37°C�, apoptosis inducer �1 �M staurosporine;
h; 37°C�, or glycolytic inhibitor �20 mM 2-deoxyglucose; 4 h;

7°C�; scale bar=20 �m. �b� pH calibration curve showing fluores-
ence lifetime versus pH for Cerulean. The cells were maintained in
igh K+ buffers at varying pH 5, 6, 7, and 8 at 37°C for 30 min before
maging at room temperature. All the experiments at fixed pH were
erformed by clamping pH with 5 �M nigericin in the pH buffers. �c�
teady-state lifetime histograms �with corresponding pH scale shown
n the right y axis, as calculated from the pH calibration curve� of
ormal and cancer cells under representative metabolic perturbations.
ata are shown as mean±SEM, pooled from 3 to 5 experiments. Sta-

istical significance in �c� was obtained from a one-way ANOVA test
ith p�0.05.
ournal of Biomedical Optics 031219-
living cells, we observed that mitochondrial redox fluctuations
and free radical signal fluctuations displayed nonrandom
correlations.6,7 Figures 1�a� and 1�b� demonstrate the sche-
matic of the scaling analysis procedure in intact living cells,
and the figure caption describes the premise of the scaling
analysis procedure. Earlier studies, including our recent re-
ports, have pointed out that regulatory correlations may de-
crease during aging and in diseases.14,15

With this rationale, we wanted to test whether scaling
analysis of Cerulean fluorescence fluctuations can yield addi-
tional information on the regulatory nature of glucose metabo-
lism in normal and cancer cells. We acquired an extensive set
of time-series data from living cells �normal and cancer�
where we monitored Cerulean fluorescence fluctuations be-
fore and during glucose stimulus. Figure 1�c� shows represen-
tative scaling functions F�n�=n� calculated from the Cer-
ulean time series in NMuMG and NMuMG-ST cells. The
insets show a magnified view of the fitted regions where the
scaling exponent � was determined. Since cancer cells are
expected to show more sensitive dependence on glycolysis
than the normal cells, we also obtained scaling exponents un-
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Fig. 3 Glucose-induced lifetime changes in NMuMG and
NMuMG-ST cells. �a� Representative 2p-fluorescence images of nor-
mal and cancer cells expressing Cerulean pre- and post-glucose
stimulus. 20 mM glucose was added during kinetic experiments, and
images were collected subsequently to analyze the glucose-induced
fluorescence decay curves; scale bar=20 �m. �b� Representative life-
time kinetic profiles in NMuMG and NMuMG-ST cells with a single
20 mM glucose pulse as indicated by an arrow. All experiments were
performed at room temperature �25°C�. Typically, 20 to 30 cells were
imaged per experiment, and the displayed results are representative of
n=4 experiments in the case of pH kinetics and n=6 experiments in
the case of scaling measurements. A typical data acquisition time was
�3 min per line scan per imaging chamber �n=4 cells; scaling mea-
surements� and �20 min per imaging chamber �n=6 cells; pH
kinetics�.
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er the conditions of glycolytic inhibition �2-deoxyglucose�.
s can be seen from these figures, the normal cells are more

obust in maintaining regulatory time correlations than cancer
ells. In the latter, glycolytic inhibition almost completely
uppresses the nonrandom scaling behavior, thereby reducing
he scaling exponent � from 0.63 to 0.54.

It is worth mentioning here that this difference is highly
ignificant since the exponent appears as the power of win-
ow size as in the scaling relationship: F�n�=n�. Fluores-
ence intensity measurements of Cerulean, although are not
ndicative of pH status in living cells, can provide useful ki-
etic information. Figure 4�a� shows kinetic profiles of Cer-
lean fluorescence emission in normal and cancer cells when
timulated by a single glucose pulse. As can be seen from the
inetic profiles, normal and cancer cells differ in their instan-
aneous fluorescence decay rates. Normal cells have a faster
ecay rate probably due to an innate adaptive response to
lycolytic inhibition. However, the cancer cells show a dra-
atic difference in glucose metabolism rate after glycolytic

nhibition, indicating that glycolytic dependence is still pre-
erved in these cells. Figure 4�b� shows a time course of scal-
ng exponent � during glucose metabolism in normal and can-
er cells. Prior to glycolytic inhibition, it can be seen that both
ormal and cancer cells displayed nonrandom ���0.5� cor-
elations in Cerulean fluorescence fluctuations, indicating
hat-there is a regulatory network operative in these epithelial
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ig. 4 Glucose-induced modifications in scaling exponent. �a� Two-
hoton fluorescence intensity kinetic profiles in normal and cancer
ells with and without glycolytic inhibitor, 2-deoxyglucose �2dG�. A
ingle glucose pulse �20 mM� transiently increases Cerulean intensity,
robably due to the cytosolic pH buffering, and the decay curves
isplay dramatic difference between normal and cancer cells. In line
ith these intensity kinetics, the kinetic profiles of scaling exponents

b� reveal that normal cells are robust under glycolytic inhibition treat-
ent �control: �=0.55; 2dG: �=0.55�, whereas cancer cells com-
letely lose regulatory correlations �control: �=0.63; 2dG: �=0.53�,

ndicating that cancer cells acutely depend on glycolysis more than
he normal cells.
ournal of Biomedical Optics 031219-
cells. Since the primary goal of this paper is to test whether
single cells exhibit regulatory network correlations rather than
identifying the individual members of the network, we would
like to treat the observed scaling response in normal and can-
cer cells as a global response of the entire glucose processing
machinery. With this in mind, it is intriguing to note that
cancer cells have a significantly higher value of scaling expo-
nent during glucose metabolism. This will be further dis-
cussed in the next section. In line with the kinetic profiles, we
carried out scaling analysis in normal and cancer cells under
glycolytic inhibition conditions as well. Figure 4�b� shows
that normal cells indeed maintain the regulatory correlations
even after preconditioning with glycolytic inhibitor, whereas
the cancer cells show a significant reduction in scaling expo-
nent upon 2dG treatment. In fact, the kinetic profile of scaling
exponent after 2dG treatment looks similar to that when the
cells were stimulated with Hanks’ balanced salt solution
�HBSS� buffer as a negative control.

4 Discussion
In this paper, we have carefully exploited the fluctuation re-
gime dynamics of fluorescent protein Cerulean and explored a
novel possibility for applying the scaling analysis as a tool in
understanding the regulatory nature of glucose metabolism in
living cells. Cerulean is a recent addition to the gamut of
fluorescent protein variants. For the first time, we have sys-
tematically explored the pH dependence of this protein in liv-
ing cells. Cerulean lifetime displayed a robust pH-sensitive
response of ��= �13% above and below neutral pH. Meta-
bolic perturbations such as staurosporine �protein kinase in-
hibitor and apoptosis inducer� and mitochondrial complex in-
hibitors �that will alter glycolytic rates� consistently showed
cytosolic acidification �Fig. 2�c��. Cancer cells displayed sig-
nificantly higher acidification owing to the fact that they usu-
ally display more glycolytic dependence. Our data are in
agreement with earlier reports where these treatments are
known to acidify cytosol and/or mitochondria.3 Further, glu-
cose stimulus transiently increased the fluorescence emission
of Cerulean �time scale �60 s�, possibly due to the transient
buffering capacity of acidified cytosol. Kinetic measurements
of fluorescence lifetime revealed an interesting discrimination
between normal and cancer cells �Fig. 3�. While normal cells
have a tight oscillatory lifetime curve after the glucose stimu-
lus indicative of pH homeostasis, the cancer cells are less
efficient in restoring pH balance after glucose stimulus, as
displayed by large reductions in Cerulean lifetime. Earlier re-
ports have pointed out that cancer cells have increased expres-
sion of glucose transporter proteins �GLUTs�. Since we did
not measure the levels of GLUTs in normal and cancer cells,
we cannot rule out the possibility that the difference in acidi-
fication can arise due to the difference in GLUT activity in
cancer cells.

Thus, in step with the literature, it is possible that
NMuMG-ST cells have an upregulated glycolytic pathway,
thereby making these cells distinct from the normal cell phe-
notype. This assumption was further confirmed by the scaling
analysis of fluorescence fluctuations in these cells, which re-
vealed interesting features. First, the effect of glycolytic inhi-
bition is less severe on normal cells, probably due to the fact
that both mitochondrial and glycolytic machinery operate in
May/June 2008 � Vol. 13�3�5
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oncert in these cells. On the other hand, glycolytic up-
egulation in cancer cells seems to be not merely a sufficient
ondition for increased energy consumption but a necessary
ondition for cell proliferation and survival as displayed by
he acute dependence on glycolysis. Second, scaling expo-
ents offer a more reproducible way of distinguishing normal
nd cancer cells rather than fluorescence intensity alone since
he latter can be affected by concentration and spectral arti-
acts. We have observed that scaling exponents are not af-
ected by differences in absolute fluorescence intensity but are
ependent only on the fluctuation dynamics �data not shown�.
his implies that scaling analysis might be a rapid diagnostic
easure of altered glucose metabolism in in vivo tumors. It is

o be noted that all our experiments were performed at 25°C.
lthough the temperature per se does not affect the glucose
etabolism kinetics �the intensity kinetic profiles as shown in
ig. 1�a� were identical at 25° and 37°C� in our in vitro
xperiments, we cannot completely discard the possibility that
hese in vitro results may not be identical to real physiological

etabolic status in vivo. Since we have not undertaken any in
ivo experiments, it is difficult for us to predict the extent of
ifferences. However, we can certainly speculate that if there
re differences between our in vitro and future in vivo experi-
ents, they may arise from other sources of physiological

omplexity in the animal models rather than just temperature
ependence of pH and/or the scaling exponents.

There are two aspects to the observed scaling behavior that
eed attention: first, the photophysical nature of fluorescent
rotein �Cerulean� fluctuations, and second, the biological
echanism that gives rise to scaling phenomenon during glu-

ose metabolism in living cells. Fluorescence correlation
pectroscopic studies have revealed that the initial excited
tate process in green fluorescent protein �GFP� involves a
roton transfer reaction and that fluorescence blinking of an-
onic GFP mutants is known to take place on a time scale of
5 to 300 ms, depending on pH.16 A more recent time-
esolved fluorescence/anisotropy study reported the structural
asis of fluorescence fluctuation dynamics of GFPs in acidic
nvironments.8 These authors provided experimental evidence
hat the total fluorescence of the excited neutral state of GFP
isplayed a strong correlation between the fluorescence life-
ime, structural conformation, and pH. Biexponential aniso-
ropy decay analysis further suggested a segmental mobility
f the chromophore associated with conformational changes
f the protein, and this segmental motion became faster with
n enhanced amplitude as the pH is reduced.

Thus, fluorescence fluctuations of GFP mutants including
erulean as in this work can be rationalized by a subtle inter-
lay of intracellular, pH dynamics and excited state dynamics
f the fluorophore itself. More recent x-ray studies of Cer-
lean have revealed intriguing features such as shift in absor-
ance band in acidic pH �7 to 5� without significant modula-
ion of fluorescence emission.17 It was further suggested that
cidification may be accompanied by a slow chromophore
onization from trans to cis form, and we speculate that Cer-
lean fluorescence fluctuations reported in this paper arise
redominantly from excited state dynamics rather than con-
ormational changes since these authors did not find evidence
or multiple conformations of the protein.17 As far as the bio-
ogical mechanism behind the glucose-induced scaling behav-
or in normal and cancer cells, the observations are consistent
ournal of Biomedical Optics 031219-
with a tight regulatory network that encompasses glycolytic
and mitochondrial OxPhos pathways. In this paper, we have
attempted to correlate transient pH changes �as measured
through lifetime imaging� and scaling behavior in intensity
fluctuations �as measured through fluorescence intensity im-
aging�. Although we have demonstrated a clear correlation
between these two independent assays in discriminating nor-
mal from cancer cells, it will be certainly intriguing and
worthwhile to directly probe scaling behavior in fluorescence
lifetime fluctuations. The major impediment lies in the vast
difference in data acquisition time in intensity and lifetime
imaging approaches. For statistical robustness, it is imperative
to sample many pixels �i.e, line scan� and to collect at least
6000 to 8000 time points. This condition implies that a line-
scan time series �N�8000 time points� could be obtained in
�200 s in the intensity imaging approach. On the other hand,
the current lifetime imaging platform in our laboratory would
require typically 40 min to obtain a line-scan time series. This
prolonged data acquisition would defeat the purpose of moni-
toring fast, transient phenomena in the biological system un-
der question. Furthermore, it is highly probable that the scal-
ing exponents from such lifetime fluctuation measurements
may not reflect the “true” nonlinear dynamical features but
only some averaged, macroscopic behavior of the system.

In summary, we have reported a hitherto unknown scaling
behavior in normal and cancer cells during glucose metabo-
lism. To the best of our knowledge, this is the first demonstra-
tion of nonlinear dynamics in the glucose metabolizing net-
work in living cells. Understanding tumor metabolism is the
first step in designing efficient therapeutic intervention. Since
tumors have higher probability for glycolytic up-regulation,
targeting this evolutionarily conserved pathway can be a real-
istic approach for early detection of tumors in vivo as well as
for targeting drugs for therapy. Since clinical modalities such
as positron emission tomography �PET� already utilize pref-
erential glucose uptake by tumors as a means to achieve im-
aging contrast, the scaling analysis reported in this paper
might serve as a complementary tool in augmenting diagnos-
tic information in vivo. Although we have no sufficient data to
prove that scaling analysis is effective in vivo, we speculate
that the present study is the first step in achieving that goal.
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