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Abstract. The purpose of this study is to apply near-infrared �NIR�
Raman spectroscopy and classification and regression tree �CART�
techniques for identifying molecular changes of tissue associated with
cancer transformation. A rapid-acquisition NIR Raman system is uti-
lized for tissue Raman spectroscopic measurements at 785-nm exci-
tation. 73 gastric tissue samples �55 normal, 18 cancer� from 53 pa-
tients are measured. The CART technique is introduced to develop
effective diagnostic algorithms for classification of Raman spectra of
different gastric tissues. 80% of the Raman dataset are randomly se-
lected for spectral learning, while 20% of the dataset are reserved for
validation. High-quality Raman spectra in the range of
800 to 1800 cm−1 are acquired from gastric tissue within 5 s. The
diagnostic sensitivity and specificity of the learning dataset are 90.2
and 95.7%; and the predictive sensitivity and specificity of the inde-
pendent validation dataset are 88.9 and 92.9%, respectively, for sepa-
rating cancer from normal. The tissue Raman peaks at 875 and
1745 cm−1 are found to be two of the most significant features to
discriminate gastric cancer from normal tissue. NIR Raman spectros-
copy in conjunction with the CART technique has the potential to
provide an effective and accurate diagnostic means for cancer detec-
tion in the gastric system. © 2008 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2939406�

Keywords: cancer diagnosis; near-infrared Raman spectroscopy; stomach; classifi-
cation and regression tree.
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Introduction

espite a falling incidence rate of gastric cancer, it is still the
ourth most common malignancy, and also the second leading
ause of cancer deaths in humans, accounting for 600, 000
eaths worldwide.1,2 If the tumor is detected early and treated
efore it has invaded the gastric wall, the survival rate of the
atient will increase tremendously.2 However, early identifi-
ation and demarcation of such lesions in the stomach can be
ery difficult using the conventional diagnostic method of a
hite-light endoscope, which heavily relies on the visual ob-

ddress all correspondence to Zhiwei Huang, Bioengineering, Faculty of Engi-
eering, National University of Singapore, 9 Engineering Drive 1, Singapore
17576; Tel: 65-6516-8856; Fax: 65-6872-3069; E-mail: biehzw@nus.edu.sg
ournal of Biomedical Optics 034013-
servation of gross morphological changes of tissue, leading to
poor diagnostic accuracy. Excisional biopsy currently remains
the standard approach for cancer diagnosis, but this method is
invasive and impractical for screening high-risk patients who
may have multiple suspicious lesions.

Raman spectroscopy, which makes use of inelastic light
scattering processes to capture “fingerprints” of specific mo-
lecular structures and conformations of a given tissue or dis-
ease state, has shown to be a promising optical diagnostic
technique for identifying malignant tissues in various
organs.3–12 To convert molecular differences subtly reflected
in Raman spectra between different tissues types into valuable

1083-3668/2008/13�3�/034013/8/$25.00 © 2008 SPIE
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iagnostic information for clinicians, multivariate statistical
echniques have been successfully deployed in developing ef-
ective diagnostic algorithms for Raman spectroscopic diag-
osis of cancers.3–7 Due to the complexities of the biological
issues, principal component analysis �PCA�, which is able to
ake into account the whole range of Raman spectral features
f the tissue, has often been applied to simplify the computa-
ional complexities for the development of effective classifier
lgorithms �e.g., linear discriminant analysis �LDA�, logistic
egression� without compromising diagnostic accuracy.3–9

owever, PCA does not necessarily provide the physical
eanings of component spectra for tissue classification.8 Very

ecently, the classification and regression tree �CART�
echnique,13 based on the recursive partitioning for generating
iscriminatory algorithms for classification of different sub-
roups in complex datasets,14 has received extensive attention
n biomedical fields such as proteomics, genomics, and mass
pectroscopy.14–20 For instance, Luk et al.14 applied both neu-
al networks and CART on liver cancer proteomes and found
hat both algorithms produced equally good predictive abili-
ies. Garzotto et al.15 employed CART to identify prostate
ancer from normal tissue with the sensitivity of 96.6%.
hang et al.16 also made use of CART on mass spectral urine
rofiles to achieve the sensitivity of 93.3% and specificity of
7.0% for separating transitional cell carcinoma from normal
ladder tissue. Despite these successful applications, to date,
he CART technique has yet to be applied to Raman spectros-
opy for elucidation of Raman spectra in tissue diagnosis. In
his study, we explore the feasibility of applying the CART
echnique to develop effective diagnostic algorithms for dif-
erentiation of near-infrared �NIR� Raman spectra between
ormal and cancer tissue, and to further understand molecular
hanges reflected in Raman spectra of tissue associated with
he onset of malignancy in the stomach.

Materials and Methods
.1 Raman Instrumentation
he instrument used for tissue Raman spectroscopic studies
as been described in detail elsewhere.21 Briefly, this system
onsists of a 785-nm diode laser, a transmissive imaging
pectrograph with a Kaiser holographic grating, an NIR-
ptimized back-illuminated, deep-depletion charge-coupled
evice �CCD� detector �Princeton Instruments, Trenton, New
ersey�, and a specially designed fiber optic Raman probe that
an effectively eliminate interference from fiberoptic fluores-
ence and silica Raman signals. The 785-nm laser is coupled
o a 100-�m core diameter fiber �NA=0.22� and the fiber is
onnected to the Raman probe for tissue excitation. Tissue
IR Raman signals collected by the probe are fed into the

pectrograph and the holographic grating disperses the incom-
ng light onto the liquid-nitrogen-cooled CCD detector con-
rolled by a computer. The tissue Raman spectra are displayed
n the computer screen in real time and can be saved for
urther analysis. The system acquired Raman spectra over the
avenumber range of 800 to 1800 cm−1, and each spectrum
as acquired within 5 s with light irradiance of 1.56 W /cm2.
he spectral resolution of the system is 4 cm−1. All wave-

ength calibrated spectra were also corrected for the wave-
ength dependence of the system using a standard lamp �RS-
0, EG and G Gamma Scientific, San Diego, California�.
ournal of Biomedical Optics 034013-
2.2 Gastric Tissue Samples
A total of 73 gastric tissue samples were collected from 53
patients �28 men and 25 women with a median age of
62 years� who underwent endoscopy biopsies or gastrectomy
operations with clinically suspicious lesions. All patients pre-
operatively signed an informed consent permitting the inves-
tigative use of the tissues, and this study was approved by the
Ethics Committee of the National Healthcare Group �NHG� of
Singapore. After biopsies or surgical resections, tissue
samples were immediately sent to the laboratory for Raman
measurements. After spectral measurements, the tissue
samples were fixed in 10% formalin solution and then sub-
mitted back to the Hospital for histopathologic examinations.
A gastrointestinal �GI� pathologist conducted pathologic ex-
aminations, and the results showed that among the 73 homog-
enous gastric tissue samples with clearly defined pathologies,
55 tissue specimens were normal, and 18 were cancer �adeno-
carcinoma�. A total of 222 tissue Raman spectra were ac-
quired from different sites of gastric tissues, in which 143
Raman spectra were from normal and 79 from cancer. Note
that the gastric tissue samples were approximately 3�3
�2 mm in size, and the 785-nm laser light with a beam size
of 1 mm was focused on the tissue surface to mimic the in-
vivo clinical measurements. For the larger resection tissues,
Raman spectra were acquired on two to five different sites of
the same tissue samples, and the corresponding pathology ex-
aminations were also performed on the tissue sites measured
to correlate with Raman spectra for tissue classification. Each
tissue surface location measured was then marked and stained
for pathology. After comparing with pathologic results, only
those Raman spectra that were correctly acquired from the
tissue surfaces were included in the data analysis.

2.3 Classification and Regression Tree
Classification and regression tree �CART� is a statistical tech-
nique that selectively employs variables that are of the utmost
importance from a large number of input variables in data-
bases for binary discrimination.13–20 It is implemented by
growing a tree structure with a root node containing all the
objects that are then further divided into nodes by recursive
binary splitting.14,15 The split that gives the best reduction in
impurity between the mother group �tp� and the daughter
groups �tl and tr� at different nodes of the tree is sequentially
selected in the construction of the CART. The maximization
of change of impurity function �i�t� at each node is defined
as:20

�i�t� = arg max
xj�xj

R,j=1,. . .,M

�i�tp� − Pli�tl� − Pri�tr�� , �1�

where xj represents different variables for different values of j
from a total of M variables; xj

R represents the best splitting
value of xj when a maximum change of impurity function
�i�t�xj��, is achieved.13,18 i�tp�, i�tl�, and i�tr� are the impurity
functions belonging to the parent node tp, left child node tl,
and right child node tr of the parent node, respectively. Pl and
Pr are the probabilities of achieving left and right nodes, re-
spectively. CART will search through all possible values of
variables for the best splitter at the maximal �i�t� �xj �xj

R�. In
this study, the Gini index14 is used to determine the impurity
May/June 2008 � Vol. 13�3�2
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�t� at each node, which forms the criterion for splitting.

Gini = 1 − �
j=1

c �nj

n
�2

, �2�

here c is the number of different classes, n is the total num-
er of objects, and nj is the number of objects from class j
resented in the node. Generally, a tree is first grown to its
aximal size until the terminal nodes are sufficiently small.
owever, the maximum tree size that is usually overfitted
ith noise could not generalize well for future datasets.
ence, the tree is usually gradually shrunk by pruning away

erminal nodes that lead to the smallest decrease in accuracy.
or each subtree T, a complexity-misclassification cost func-

ion R��T� is generated:20

R��T� = R�T� + ��T� , �3�

here R�T� is the resubstitution misclassification error of T;
nd �T� and � represent the number of terminal nodes and the
ost of complexity per terminal node, respectively. During
ach successive pruning process, a smaller subtree �i.e., T�

T that minimizes R��T��� with a smaller number of termi-
al nodes will be generated, but the cost of complexity � will
radually increase. As a result, searching for an optimal tree
ize is equivalent to finding the correct �, such that the infor-
ation in the learning dataset is best fit rather than overfit or

nderfit.13

Although only one variable would be selected as the best
plitter at any node in a CART, there would always be a
econd best variable that could perform nearly as well as the
est splitter. The second best variable�s� could be masked by
he best splitter�s� and would not appear in the final CART
ree. As such, to avoid masking the importance of any vari-
bles used in CART, the relative importance of each input
ariable is assessed based on its importance over all possible
odes and splits by a “variable ranking method.” The impor-
ance of a variable Xm is defined as:13

M�Xm� = �
t�T

�I�s̃m,t� , �4�

ith �I�s̃m , t�=max �IC1
�sm , t�, which equals the maximal

ecrease in node impurity for the division of a parent node t
nto daughter nodes C1 and C2 that are guided by a surrogate
plit s̃m. A surrogate split is defined by a surrogate variable.
his variable is the second best variable, which follows the
elected variable by giving the second best reduction in im-
urity of the mother group into the daughter groups. This
aximal decrease in node impurity is summed for all the

odes of the optimal subtree T to obtain the importance of a
ariable.

In this study, a ten-fold cross-validation was chosen to se-
ect the optimal tree size.13 The learning dataset is randomly
ivided into ten subsets: one of the subsets is used as an
ndependent testing dataset, while the other nine subsets are
ombined and used as training datasets. The tree growing and
runing procedure is repeated ten times with each time using
different subset as a testing dataset. For each tree size, the

esubstitution and cross-validation error are calculated and av-
raged over all subsets. The misclassification cost obtained for
ournal of Biomedical Optics 034013-
each subtrees on the cross-validation subset is matched with
the subtrees of the complete model learning dataset using the
� values. The optimal sized tree is selected to be within one
standard error �SE� of the complexity-misclassification rate
for the minimum complexity-misclassification rate.13,20

2.4 Statistical Analysis
Among the 222 Raman spectra of gastric tissues acquired, the
Raman datasets were divided randomly into a model learning
dataset �80% of total dataset� and a validation dataset �20% of
total dataset� for CART analysis.15 An unpaired two-sided
Student’s t-test was first applied in the learning dataset to
identify diagnostically significant prominent Raman peaks
�p�0.05� as input variables for the development of CART
algorithms for binary-class classification. Equal misclassifica-
tion costs were specified so that there was an unbiased cost
associated with misclassifying a cancer case as a normal case,
and vice versa. The prior probability of each class was defined
as proportional to the sizes of the groups in the dataset. There-
after, the predictive sensitivity and specificity of the resulting
tree model were evaluated using both the model learning
�80% of total dataset� and validation dataset �20% of total
dataset�. Note that for the assessment of diagnostic sensitivity
and specificity of the Raman technique, histopathological re-
sults were regarded as the gold standard.

3 Results
Figure 1 shows the mean Raman spectra of normal �n=115�
and cancer �n=61� gastric tissue in the model learning
dataset. Prominent Raman peaks are observed in both normal
and cancer gastric tissue, which are located at around
875 cm−1 �C–C stretching of hydroxyproline�, 1004 cm−1

�C–C6H5 symmetric ring breathing of phenylalanine�,
1100 cm−1 �C–C stretching of phospholipids�, 1230 cm−1

�PO2
− asymmetric stretching of nucleic acids�, 1265 cm−1

�C–N stretching and N–H bending modes of amide III of pro-
teins�, 1335 cm−1, �CH3CH2 twisting of proteins and nucleic
acids�, 1450 cm−1 �CH2 bending of proteins and lipids�,
1655 cm−1 �CvO stretching of amide I of proteins�, and
1745 cm−1 �CvO stretching of phospholipids�,6–10 respec-

Fig. 1 Mean Raman spectra of gastric tissues from �a� normal �n
=115� and �b� cancer �n=61� in learning Raman dataset.
May/June 2008 � Vol. 13�3�3
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ively. The intensity differences between the two tissue types
re remarkable. For example, cancer tissues show higher in-
ensities at 1265, 1450, and 1655 cm−1, while lower at 875,
004, 1100, and 1745 cm−1, compared to normal tissues. This
uggests that there is an increase or decrease in the percentage
f a certain type of biomolecule relative to the total Raman-
ctive constituents in cancer tissue. There are also obvious
hanges of Raman peak positions and bandwidths in the
anges of 900 to 1100 cm−1, 1200 to 1500 cm−1, and
500 to 1800 cm−1, which are related to the breathing mode
f phenylalanine and C—C stretching of phospholipids, the
mide III and amide I of proteins, CH3CH2 twisting of
roteins/nucleic acids, and CvC stretching of phospholipids,
espectively, for cancer tissue. The differences in Raman spec-
ra between normal and cancer tissues demonstrate the utility
f Raman spectroscopy for gastric cancer diagnosis.

Table 1 lists the mean values�standard deviation �SD� of
even prominent Raman peaks for tissue classification. Over-
ll, the intensity differences of these Raman peaks are statis-
ically significant between normal and cancer tissues �un-
aired two-sided Student’s t-test, p�0.05�. Based on the
ogistic regression analysis,22 the discrimination functions
enerated from each of these Raman peak intensities yield a
ensitivity of 60 to 82% and the specificity of 60% to 75%,
espectively, for identifying cancer from normal gastric tis-
ues �Table 1�.

To further improve tissue classification, CART was subse-
uently employed to correlate all the diagnostically significant
aman peak intensities with tissue pathologies. Figures 2�a�
nd 2�b� show the relationship of complexity with respect to
he misclassification cost and the number of terminal nodes
or both cross-validated and resubstitution error after ten-fold
ross-validation of the CART model learning dataset. The
isclassification cost for the resubstitution error increases
onotonically as the complexity increases with a correspond-

ng decrease in terminal nodes. On the other hand, the mis-
lassification cost for the cross-validated error increases at a
lower rate compared to the resubstitution error. A local mini-
um misclassification cost of 0.1875 is found at a complexity

f 0.00568 for the cross-validated error. Consequently, ac-

able 1 Statistical characteristics of diagnostically significant Rama
ataset�. Note that SD is standard deviation. The symbol * denotes a
issue.

aman peak
cm−1�

Normal
�mean±SD�

Cancer
�mean±SD�

75 0.011 �0.002� 0.009 �0.003�

004 0.011 �0.002� 0.010 �0.002�

100 0.011 �0.002� 0.008 �0.002�

265* 0.003 �0.002� 0.005 �0.002�

450* 0.011 �0.003� 0.013 �0.003�

655* 0.007 �0.002� 0.008 �0.002�

745 0.005 �0.003� 0.004 �0.003�
ournal of Biomedical Optics 034013-
cording to the cross-validated dataset, the optimal sized tree
will be chosen at a complexity of 0.00852 with 13 terminal
nodes, which is within one standard error �SE� of the
complexity-misclassification cost for the local minimum
complexity-misclassification cost.

Figure 3 displays the CART analysis procedure in a clas-
sification model based on the model learning dataset �80% of
total dataset�. With the CART model, six diagnostically sig-
nificant Raman peaks at 875, 1100, 1265, 1450, 1655, and
1745 cm−1 are interlinked differently to build the following
13 subgroups �designated as either normal or cancer in the
terminal subgroups�: normal being groups 1, 3, 6, 7, 9, 11, and
13; cancer being groups 2, 4, 5, 8, 10, and 12. All these six
significant Raman peak intensities are combined differently to
build the seven normal and six cancer subgroups for best tis-
sue classification.

s �unpaired two-sided Student’s t-test, p�0.05; 80% of total Raman
lar Raman peak intensity with cancer tissue being higher than normal

Sensitivity
�%�

Specificity
�%� p-value

70.5 �43/61� 74.8 �86/115� 0.000001

62.3 �38/61� 66.1 �76/115� 0.007582

68.9 �42/61� 73.9 �85/115� 0.000018

65.6 �40/61� 65.2 �75/115� 0.000000

82.0 �50/61� 60.0 �69/115� 0.000002

70.5 �43/61� 61.7 �71/115� 0.000002

60.7 �37/61� 61.7 �71/115� 0.000006

Fig. 2 Dependence of complexity � on �a� misclassification cost
nodes for cross-validated error after ten-fold cross-validation, and re-
substitution error, and on �b� number of terminal nodes for resubstitu-
tion error of the CART model learning dataset. The optimal sized tree
was chosen to be at a complexity of 0.00852 with 13 terminal nodes
within one standard error �SE� of the complexity-misclassification cost
for the local minimum complexity-misclassification cost.
n peak
particu
May/June 2008 � Vol. 13�3�4
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Table 2 tabulates the variable ranking of the Raman peaks
nd the total number of appearing times of different intensity
eatures for generating the CART-based diagnostic model
Fig. 3�. According to the variable ranking method,13 the most
nd least important Raman peaks are found to be located at
75 and 1004 cm−1, respectively. By assessing the final
ART-based diagnostic model, the Raman peaks that appear

he most and least number of times are located at 1745 and
004 cm−1, respectively. Raman peaks located at 1655, 1265,

ig. 3 The optimal classification tree generated by the CART method
ignificant Raman peaks �875, 1100, 1265, 1450, 1655, and 1745
erminal subgroups. The decision-making process involves the evalu
eaches a terminal node with the designated class outcome, i.e., norm

able 2 The variable rankings of all the input Raman peak intensity
eatures �n=7� computed by the CART algorithm, with the corre-
ponding total number of times of the respective feature appearing in
he final CART-based diagnostic model. Note that the symbol # de-
otes a particular Raman peak intensity with variable rankings �1 as

he most important and 7 as the least important�.

Raman peak
�cm−1�

Number of times
appearing in the final

CART model

# Variable
ranking

�importance�

875 2 1

1004 0 7

1100 1 5

1265 2 4

1450 2 6

1655 2 3

1745 3 2
ournal of Biomedical Optics 034013-
1100, and 1450 cm−1, which are in the order of descending
variable rankings, appeared 2, 2, 1, and 2 times, respectively,
in the final CART model. As a result, Raman peaks at 875,
1100, 1265, 1450, 1655, and 1745 cm−1 are found to be most
constructive toward building the final CART-based diagnostic
model, and Raman peaks at 875 and 1745 cm−1 appear to be
the most important variables for tissue classification.

To evaluate the performance of the CART-based diagnostic
algorithms for predicting the prospective cases �generaliza-
tion�, a randomly selected validation dataset �20% of total
dataset� was used, in which six important Raman peaks �875,
1100, 1265, 1450, 1655, and 1745 cm−1� were utilized as an
input in the final CART-based diagnostic model. Table 3 sum-
marizes the classification results of the two pathologic groups
�normal versus cancer� for both the model learning dataset
�after ten-fold cross-validation� �80% of total dataset�, and the
validation dataset �20% of total dataset�. The sensitivity of
90.2% and specificity of 95.7% can be obtained for the model
learning dataset, while a predictive sensitivity and specificity
of 88.9 and 92.9% can be achieved for the independent vali-
dation dataset. The results show that CART-based diagnostic
algorithms that utilize the most diagnostically important peaks
of Raman spectra are powerful and robust for accurately pre-
dicting the tissue types in the prospective new cases.

4 Discussion
The spectral analysis technique based on PCA-LDA has been
widely practised in spectroscopy diagnosis of diseased
tissue.3–8 PCA is basically targeted to spectral data reduction
rather than identification of biochemical components in tissue.
The PCA-LDA model usually cannot interpret the physical
meanings of the component spectra generated because the

n-fold cross-validation of the model learning dataset by utilizing six
The binary classification tree is composed of 12 classifiers and 13
f if-then rules of each node from top to bottom, which eventually
or cancer �C�.
after te
cm−1�.
ation o
al �N�
May/June 2008 � Vol. 13�3�5
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Cs that constitute most of the variance in the spectroscopic
ata are not necessary for the spectral parameters with the
ost diagnostic utility.3,4,8 In this study, a novel spectroscopy

nalysis method based on the classification and regression tree
CART� diagnostic model is explored to identify the distinc-
ive Raman peak features for gastric tissue differentiation, and
o relate to particular biochemical changes �e.g., vibrational

odes of proteins, lipids, or nucleic acids� in tissue. We dem-
nstrate that the CART-based diagnostic tree generated from
he six significant Raman peaks �875, 1100, 1265, 1450, 1655,
nd 1745 cm−1� can be used to correlate well with pathologi-
al classification of gastric tissues. We have identified the ex-
ent of significance of these prominent Raman peaks for the
onstruction of the CART model �Table 2�, and found that a
aman signal at 875 cm−1 �� �C—C� of hydroxyproline of
ollagen� and 1745 cm−1 �� �CvO� of phospholipids� are
he most significant spectral features for gastric tissue diagno-
is and characterization. However, the significance of all these
aman peak intensity features with respect to gastric tissue
arcinogenesis has not been fully explored in the literature. In
his work, the Raman peak intensity at 875 cm−1 has been
ound to decrease significantly with malignancy �Fig. 1�, in-
icating a reduction in the percentage of collagen content
elative to the total Raman-active components in cancer tis-
ue. This observation is in agreement with the reports that
ancerous cells proliferate, invade underlying layers, and ex-
ress as a class of metalloproteases,23,24 leading to a decrease
n the amount of collagen level.25 In addition, the Raman
eaks at 1265 and 1655 cm−1 that are presumably ascribed to
he amide III and amide I of proteins �in the �-helix confor-
ation of histones making up the chromatin�26 are also found

o be important spectral features �Table 2�. The significant
ncrease of these two Raman intensity features indicates the
levated percentage of histones concentration with respect to
he total Raman-active constituents in cancer. These findings
ccord with gastric cytologic studies of grading malignancy
y the indication of nuclear hyperchromasia.27 On top of this,

Table 3 Classification results of Raman predi
learning dataset �80% of total dataset� using th
dataset �20% of total dataset� using a CART-base

Pathology and classification

Learning model Nor

�after ten-fold cross-validation� Can

Sensitiv

Specific

Testing model Nor

Can

Sensitiv

Specific
ournal of Biomedical Optics 034013-
Raman peak intensities at 1100, 1450, and 1745 cm−1 that
represented mostly phospholipids at different molecular struc-
tures with different vibrational modes6–10 are also found to
play pivotal roles toward tissue classification. Consistent with
Raman studies on lung cancer diagnosis by Huang et al.,10 we
also observed a lower percentage Raman signal of phospho-
lipids �e.g., 1100 and 1745 cm−1� in cancer gastric tissue. One
notes that the important feature of Raman peaks at 1745 cm−1

�� �CvO� of phospholipids� appeared three times for the
CART-based diagnostic model. This reveals that the signifi-
cance of the variation in the concentration of phospholipids in
gastric tissue and cells may be associated with malignant
transformation. Hence, the CART technique may be a useful
approach to identifying the origins of biochemical/
biomolecular changes of Raman spectra for tissue carcinogen-
esis analysis.

Applying the CART technique for classification of tissue
Raman spectra, the predictive diagnostic sensitivity of 92.9%
�26 /28�, specificity of 88.9% �16 /18�, and accuracy of
91.3% �42 /46� can be achieved for the independent valida-
tion dataset �Table 3�. To compare with the CART method, we
also performed the commonly practised PCA-LDA method
using 80% of the same Raman dataset for training and 20%
for testing for tissue classification, and a predictive sensitivity
of 96.4% �27 /28�, specificity of 94.4% �17 /18�, and accu-
racy of 95.7% �44 /46� can be obtained for gastric cancer
diagnosis. Further work based on PCA-LDA and CART tech-
niques using 80% training/20% testing of the Raman dataset
together with a five-fold cross-validation28 shows that the
PCA-LDA approach yields a sensitivity of 92.4% �73 /79�,
specificity of 94.4% �135 /143�, and accuracy of 93.7%
�208 /222�; whereas the CART method generates a sensitivity
of 86.1% �68 /79�, specificity of 97.2% �139 /143�, and accu-
racy of 93.2% �207 /222�, respectively, for cancer detection.
Hence, the CART-based diagnostic algorithms produce a
similar level of diagnostic accuracy compared to the PCA-

f the two pathological groups with the model
ld cross-validation method, and the validation
ostic algorithm.
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DA model. These further reinforce that the CART-based di-
gnostic algorithms generated are robust and powerful for tis-
ue diagnosis and characterization by Raman spectroscopy.
esides the ability for tissue classification, the CART diag-
ostic model could also provide a novel way for better under-
tanding of the relationship between the disease-related bio-
hemical changes of Raman spectra and tissue pathologies.
e use the CART technique to evaluate how different Raman
olecular information is correlated with tissue types by ana-

yzing how the different Raman peaks are interlinked together
o form different subgroups for best tissue classification. For
nstance, in Fig. 3, it is found that group 5 �cancer subgroup�
as the highest probability of incidence, followed by group 3,
hich is a normal subgroup for both the model learning and
alidation datasets. In group 5, CART indicates that cancer
astric tissues are associated with a relative increase in Ra-
an peak intensities at 1655 and 1745 cm−1, while a decrease

t 875 and 1450 cm−1. These results, in fact, are consistent
ith reports on the decrease of Raman intensity ratio at
655 to 1455 cm−1 associated with malignancies in the cer-
ix and lung.10,11 The CART model also shows that Raman
eaks at 875 and 1745 cm−1 representing collagen and phos-
holipids, respectively, appear to be significantly correlated
ith the Raman peaks at 1450 and 1655 cm−1 for identifying

he cancer subgroup �group 5�. Conversely, the Raman peaks
t 875, 1655, and 1745 cm−1 utilized to construct a cancer
ubgroup �group 5� can be employed for identifying the nor-
al subgroup �group 3�. CART also indicates that compared

o cancer tissue, normal gastric tissues tend to be related with
igh collagen contents �Raman peak at 875 cm−1� in extracel-
ular matrix, high lipid contents �Raman peak at 1745 cm−1�
resent in both extracellular matrix and cytoplasm, and a
ower histones content �Raman peak at 1655 cm−1� in the
ucleus. Further investigation of other subgroups shows that
eterogeneous molecular changes may occur in tissue, en-
bling cancer subgroups to be distinguished from normal. For
xample, collagen content typically decreases with malig-
ancy, but there are quite a number of other cancer subgroups
groups 2, 8, and 10� associated with an increase in collagen
ontent. These subgroups are accompanied by either less
hospholipids or higher histones content, which could enable
hem to be distinguished from normal tissue. The prior CART-
aman analysis results indicate that most biochemical/
iomolecular information from tissue and cells are essential
or tissue discrimination, and the CART-based diagnostic
odel is able to partition different subgroups based on differ-

nt compositions of Raman molecular information for sepa-
ating gastric cancer from normal. Therefore, the CART-
aman technique may provide new insights into the
iochemical/biomolecular changes associated with malignant
ransformation.

In summary, the CART technique was first introduced and
mplemented to develop effective diagnostic algorithms for
lassification of Raman spectra between normal and cancer
astric tissues. This work shows that NIR Raman spectros-
opy, in combination with powerful CART algorithms, has
otential to provide an effective and accurate diagnostic
eans for cancer diagnosis in the gastric system. Further stud-

es on a larger series of gastric tissues, in which the CART
iagnostic algorithms are tested prospectively on new cases,
ournal of Biomedical Optics 034013-
are ongoing to reconfirm these preliminary findings.
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