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Abstract. Near-infrared �NIR� region-based spectroscopy is examined
for accuracy with spectral recovery using frequency domain data at a
discrete number of wavelengths, as compared to that with broadband
continuous wave data. Data with more wavelengths in the frequency
domain always produce superior quantitative spectroscopy results
with reduced noise and error in the chromophore concentrations. Per-
formance of the algorithm in the situation of doing region-guided
spectroscopy within the MRI is also considered, and the issue of false
positive prior regions being identified is examined to see the effect of
added wavelengths. The results indicate that broadband frequency
domain data are required for maximal accuracy. A broadband fre-
quency domain experimental system was used to validate the predic-
tions, using a mode-locked Ti:sapphire laser for the source between
690- and 850-nm wavelengths. The 80-MHz pulsed signal is hetero-
dyned with photomultiplier tube detection, to lower frequency for
data acquisition. Tissue-phantom experiments with known hemoglo-
bin absorption and tissue-like scatter values are used to validate the
system, using measurements every 10 nm. More wavelengths clearly
provide superior quantification of total hemoglobin values. The sys-
tem and algorithms developed here should provide an optimal way to
quantify regions with the goal of image-guided breast tissue spectros-
copy within the MRI. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

ear-Infrared �NIR� tomography systems have recently been
eveloped that transition the modality away from stand-alone
maging systems toward hybrid-modality combinations with
tandard clinical imaging systems. To optimize this approach
ith respect to optical tomography, some important hardware

nd software specifications need to be determined. In this
tudy, the theoretical and experimental foundations for incor-
orating broadband NIR tomography into MRI breast imaging
ave been examined. Issues related to the choices of NIR
pectroscopy hardware have been evaluated, including the im-
act of frequency-domain versus continuous-wave data, as
ell as the extent to which the wavelength band used in the
easurements affects the accuracy. The goal of the work has

een to investigate the optimal way of achieving quantitative
pectroscopy of MRI-directed tissue regions, through theoret-
cal and basic experimental analysis of different measurement
ystems.

ddress all correspondence to: Brian W. Pogue, Thayer School of Engineering,
artmouth College, 8000 Cummings Hall, Hanover, New Hampshire, 03755;

el: +603–646–3861; Fax: +603–646–3856; E-mail: pogue@dartmouth.edu
ournal of Biomedical Optics 041305-
In magnetic resonance imaging �MRI� of the breast, mul-
tiple abnormalities are commonly observed because women
are referred to MRI when there is complex tissue
architecture.1 As a result, the number of false positive abnor-
malities can be quite high, and augmenting this detection with
additional diagnostic information would be a way to increase
specificity. Quantitative NIR spectroscopy could be applied to
MRI-defined tissue regions as a means of providing
molecular-specific information. Applying existing NIR to-
mography methods to MR breast imaging has been demon-
strated in previous work.2–4

Integrating MRI-derived structural information into NIR
image reconstruction was initially considered theoretically by
Barbour et al.,5 Arridge and Schwelger,6 and Pogue and
Paulsen.7 These studies applied simple segmentation methods
to define homogenous tissue volumes. The approach was used
experimentally by Ntziachristos et al.8 to quantify optical in-
docyanine green in breast cancers whose shape was identified
by MRI. Assigning tissue volumes to be homogenous regions
optically produces a hard encoding of the prior information,
which reduces the number of unknown estimation parameters

1083-3668/2008/13�4�/041305/10/$25.00 © 2008 SPIE
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nd results in a sufficiently well-conditioned NIR reconstruc-
ion problem to not require regularization. Alternatively, the
patial priors can be encoded through a regularization matrix,
s demonstrated by Brooksby et al.4,9 and Carpenter et al.3

his strategy produces soft encoding of the MRI structure,10

hich still allows tissue heterogeneity to exist within the pre-
efined regions. The critical challenge for NIR is to provide
nformation that reduces the false positive identification of
reast abnormalities by quantifying suspicious volumes defin-
ble from MRI. Implementation of NIR spectroscopy on MRI
reast volumes was investigated in this study, with the goal of
etermining which approach more accurately quantifies ab-
ormalities embedded within the fibroglandular tissue of the
reast.

NIR spectroscopy of breast has been able to quantify both
ormal and tumor tissues based on differences in chro-
ophore concentrations and scattering properties.11–19 Studies

ave shown that tumors are detectable from normal tissue
ased on local increases in blood and water, or through injec-
ion of optical contrast agents such as indocyanine green. But
uantification of these regions requires multiple
avelengths20 and direct measurements of scattering path

ength21,22 to attain an acceptable degree of accuracy in the
ecovered values. While these factors have been studied ex-
ensively without prior information, it is not clear how much
pectral data are required in the setting of MRI guided priors.
n particular, spectral bandwidth is a critical design specifica-
ion in the development of a spectroscopic tomography sys-
em. Generally, the use of more wavelengths leads to higher
uantitative accuracy; yet, it also increases the data acquisi-
ion time and computational complexity. Ideally, the minimum
umber of optical wavelengths would be used to quantify re-
ions defined by MRI. Additionally, the importance of a phase
hift measurement in differentiating absorption from scatter-
ng has been recognized for many years23–26; however, this
equires the use of photomultiplier tubes that have fast tem-
oral response, yet suffer from a loss of response beyond a
avelength of 850 nm. It is possible that including more con-

inuous wave wavelengths when combined with spectrally
onstrained reconstruction could compensate for not incorpo-
ating the phase data from the narrower band frequency do-
ain �FD� detection. The tradeoff between number of wave-

engths and image accuracy was studied here using actual
reast parenchymal patterns and experimental phantom data
epresenting tissue. The use of continuous wave �cw� versus
mplitude-modulated �FD� light to perform the spectroscopy
as also examined. Thus, it is important to recognize that the

hoice of measurement type �cw versus FD� also impacts the
avelength range that can be used, because of the photocath-
de efficiency change of the two detectors with maximal de-
ection efficiency �solid-state devices for cw versus photomul-
iplier tubes for FD�.

In addition to simulations, multiwavelength phantom re-
ults acquired with a new frequency domain system using a
i: sapphire laser demonstrated the advantage of adding more
pectral constraints in the inverse problem. The system devel-
ped in this study is a unique design, allowing a continuum of
D measurements across the NIR, within the detection range
f the photomultiplier tube detection. The use of many wave-
engths of FD data collection is demonstrated for the first
ournal of Biomedical Optics 041305-
time, and the optimal path for development of a finished clini-
cal system is discussed.

Design choices for MRI-guided diffuse spectroscopy for
breast imaging will benefit from the results of this theoretical
analysis. Breast MRI images were used as the background to
test multispectral chromophore reconstruction. The primary
metric used in the analysis was the accuracy in the recovered
chromophore concentrations within local regions of fibroglan-
dular tissue defined by MRI images.

2 Materials and Methods
2.1 Theory

The propagation of NIR light in tissue is modeled with the
radiative transfer equation based on the approximation that
scattering dominates absorption over large distances in breast
tissue,27 in which case

− � • D�r� � ��r,�� + ��a�r� +
i�

c
���r,�� = q0�r,�� ,

where q0�r ,�� is an isotropic light source at position r,
��r ,�� is the isotropic fluence at modulation frequency �,
and c is the speed of light in tissue. The two image recon-
struction parameters in the transfer equation are the absorp-
tion coefficient �a�r� and diffusion coefficient D�r�. Here,
D�r� can be written as

D�r� =
1

3��a�r� + �s��r��
,

where the reduced scattering coefficient �s��r�
=�s�r��1−g�r��, �s�r� is the scattering coefficient, and the
anisotropy factor g�r� is the mean cosine of the single scatter
function. The measurement data at the tissue surface � in-
cludes two parts: the amplitude and phase shift of transmitted
light at frequency �. The absorption and scattering process in
the tissue determine both amplitude and phase. Amplitude is
considered as measurement of attenuation of light, while
phase mainly represents the optical path length of transmitted
light. The complete set of boundary data can provide informa-
tion about the spatial distribution of the absorption and re-
duced scattering coefficients. Solving for the distribution of
optical properties is a nonlinear inverse problem. A finite-
element-based reconstruction algorithm is used and the solu-
tion is obtained with a Newton-minimization method.25 The
optical parameters are updated iteratively by the equation:

�� = �JTJ + �I�−1JT��m − �c� ,

where �m is the measurement data and �c is the modeled
data; J is the Jacobian matrix that describes the sensitivity of
the measurement data to the optical properties. JTJ is an ill-
conditioned matrix, so regularization � is added to the diago-
nal terms. The iteration continues to update the optical prop-
erty parameters until the change in projection error is less than
2% between successive iterations.

This method of reconstruction processes the measurement
data from each wavelength independently to calculate �a and
��.28 The concentrations of chromophores are estimated with
s

July/August 2008 � Vol. 13�4�2
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a based on Beer’s law, which indicates that the total absorp-
ion coefficient is a linear combination of the individual chro-

ophore contributions to absorption;

�a��� = �
i=1

N

�i���Ci,

here N is the total number of chromophores in the tissue, Ci
s the concentration of each chromophore, and �i��� is the
olar absorption coefficient of each chromophore indexed by

. Three chromophore components are assumed here: oxyhe-
oglobin �HbO2�, deoxyhemoglobin �Hb�, and water. Scat-

ering properties �scattering amplitude a and scattering power
� are found by constructing a best fit to an empirical approxi-
ation to the Mie scattering theory.29,30

�s���� = a�−b.

t has been shown that the reconstruction can be significantly
mproved if spectral constraints are directly imposed in the
econstruction, because datasets from multiple wavelengths
re used simultaneously.20 The key step in direct spectral re-
onstruction is mapping the Jacobian matrix from optical
roperty parameter space ��a and �s�� to chromophore con-
entration and scattering parameter space:

Jc = J�a
�

��a

�c
, Ja = JD �

�D

�a
, Jb = JD �

�D

�b
,

here the number of unknowns is scaled by the number of
hromophores plus the number of scattering parameters. With
irect spectral reconstruction, data from multiple wavelengths
an be processed simultaneously due to the wavelength inde-
endence of the chromophore concentration and scattering
arameters.20 In this work, simulations with different numbers
f wavelengths were compared to explore the effect of imple-
enting broadband spectral constraints.
Although spectral reconstruction estimates wavelength-

ndependent parameters, the number of unknowns is still
uch larger than the number of measurements. Therefore,

ncorporating prior structural �anatomical� information is im-
ortant during image reconstruction to decrease the ill-
osedness of the inverse problem.31 Knowledge of tissue
tructure from MRI includes the parenchymal pattern of adi-
ose and fibroglandular tissue along with the position of pos-
ible tumor targets.

Two kinds of methods can be used to incorporate prior
tructure into an iterative reconstruction process: soft priors9

nd hard priors.31,32 The hard-priors approach segments the
mage space into several regions based on MRI, where each
egion is also assumed to be optically homogenous. Thus,
terative updating is simplified to estimating the parameters
ssociated with a small number of homogenous regions that
omprise the heterogeneous image. In the process of recon-
truction, the Jacobian matrix is multiplied by a spatial prior
atrix K, given by,
ournal of Biomedical Optics 041305-
K = �
k1,1

c1 k1,2
c1

¯ k1,NR
c1

k2,1
c1 k2,2

c1
¯ k2,NR

c1

] ] � ]

kNN,1
c1 kNN,2

c1
¯ kNN,NR

c1

k1,1
c2 k1,2

c2
¯ k1,NR

c2

k2,1
c2 k2,2

c2
¯ k2,NR

c2

] ] � ]

kNN,1
c2 kNN,2

c2
¯ kNN,NR

c2

k1,1
c3 k1,2

c3
¯ k1,NR

c3

k2,1
c2 k2,2

c2
¯ k2,NR

c2

] ] � ]

	 ,

here, ki,j =1 if node i and j are in the same region, or ki,j =0 if
nodes i and j are not in the same region. NR is the number of
regions produced by the structural segmentation, NN is the
number of nodes, and ci is the chromophore or scattering
parameter. A new Jacobian matrix is constructed, where all of
the columns of the same regions are summed. The number of
unknown parameters is significantly decreased, because only
those associated with the individual regions are updated �in-
stead of each node in the regions�. This regionization was
implemented in previous work for single wavelength optical
property reconstructions, and has been extended here for di-
rect spectral recovery. The second approach, using soft-prior
information, incorporates prior structure through regulariza-
tion, which has been discussed in detail elsewhere.9

In this work, the spatial prior and spectral constrained
methods were combined to produce optimal results. Hard pri-
ors were used to incorporate spatial information from MRI.
Figure 1�a� is a standard MRI image, which defines the
boundary and structural composition of the breast. The mesh
in Fig. 1�b� is generated based on the MRI image. Figure 1�c�
is the image of the regions constructed from the structural
information provided in Fig. 1�a�. The black zone is the adi-
pose layer and the white area is fibroglandular tissue. Based
on previous simulations and experiments,33 the hard-priors ap-
proach without spectral constraints is sensitive to noise in the
measurement data as well as errors in segmentation.

An important issue for spectral constrained reconstruction
is the combination of wavelengths, which includes the spec-
tral range of wavelength and sampling of wavelengths in
some limited range. A mathematical approach can be used to
explore the theoretical choice of the number of useful wave-
lengths to achieve a certain tolerance in spectroscopy, and
tools such as singular value decomposition �SVD� have been
used in previous studies. However, in practice this choice of a
certain number of wavelengths depends on the complexity of
the field to be recovered and the contrast and chromorphores,
so there is actually no useful single cut off point in the num-
ber of wavelengths. Rather than take this theoretical approach,
here a practical focus was applied, and the spectral range
available �310 nm� was divided by the spectral bandwidth of
the laser �10 nm�, to indicate that a maximum of 31 wave-
lengths was possible experimentally. In this work, the whole
chromophore spectrum was considered equally important with
consideration of experimental capability. Therefore, simulated
datasets of 6 and 31 wavelengths were compared to study the
July/August 2008 � Vol. 13�4�3
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dvantage of introducing more spectral constraints. Six wave-
engths were chosen based on our existing NIR system �650,
50, 800, 820, 840, and 850 nm�; 31 wavelengths were cho-
en uniformly between 650 and 950 nm with a 10-nm inter-
al. Random Gaussian-distributed noise was imposed and as-
umed to be 1% in amplitude and 1 deg in phase. In addition
o FD data, cw simulations were added to the FD case of
parse �six� wavelengths by using the FD results as an initial
stimate. A cw case with 31 wavelengths was compared with
he frequency domain data to evaluate the importance of
hase shift.

.2 Experiments
n this work, a mode-locked Ti:sapphire laser tunable in
avelength from 690 to 1020 nm was used as the light source

ig. 1 �a� MRI image of breast. �b� Mesh for NIR reconstruction gen-
rated from MRI image. �c� Region segmentation based on MRI image.
ournal of Biomedical Optics 041305-
instead of fixed wavelength diode lasers. The pulsed light oc-
curs at the mode lock frequency of 80 MHz, and is detected
with photomultiplier tubes �PMTs�. The intrinsic electric sig-
nals from the Ti:sapphire laser, synchronized with the light
transmissions, were used to heterodyne down the PMT re-
sponse to low frequency �
1 kHz�. Although this mode-lock
frequency varies around 80 MHz, it is tracked by taking the
Fourier transform of the heterodyned signal and detecting the
maximum value. Additionally, the mode-lock frequencies
vary with wavelength change, but the effect is precalibrated in
software. The low frequency heterodyned-detected signals are
put through bandpass filters and amplified 100�, and then
read through a multichannel analog-to-digital data acquisition
board. The power of the light signal applied to tissue is about
30 mW at the center wavelength of 800 nm, with the avail-
able power reaching 2.9 W at the laser output. The geometry
of source fiber and detectors has been presented in our previ-
ous work.34 The detail about phase-lock detection using Ti-
:sapphire laser is discussed somewhere else.35 Greater power
levels can be used in thicker tissues, although adherence to
the medical safety limit of 1 W /cm2 is critical as well. Phan-
tom experiments were carried out using measurement wave-
lengths from 690 to 850 nm.

A phantom composed of porcine gelatin �Fisher Scientific�,
TiO2 powder �Fisher Scientific�, porcine blood, and saline
was made with heterogeneous targets for hemoglobin mea-
surement. The gelatin was heated to 40°C Celsius for a time
of 1 min in a microwave oven. Precalculated quantities of
blood were added into the mixture during the stirring and
cooling process. Stirring of the TiO2 powder into the heated
gelatin was done for 40 minutes with an automated stir bar,
and after the solution was cooled to below 30°C, the blood
was added. The total hemoglobin �Hbt� in the background of
the gelatin phantom was 15 �M. After refrigeration for 1 h,
the gelatin phantom was ready for imaging and holes were
filled with blood solutions of 30-�M Hbt and 1% Intralipid.
The radius of phantom is 44 mm, and two holes with radius
18 and 20 mm are located in the middle, as shown in Fig.
6�a�. The scattering properties were expected to be homoge-
neous, based on the fact that the Intralipid could be matched
to the scattering of the background as determined in a previ-
ous phantom study.33

3 Results
3.1 Effect of Spatial Prior Information in Different

Geometries
The parameters used in this simulation example are listed in
Table 1. The targets of chromophores were located at different
positions to study the dependence on each other, so that cross
talk among different targets can be shown in simulation re-

Table 1 Parameters of simulation example in Fig. 2.

HbO2 �mM� Hb �mM� Water �%�

Background 0.01 0.01 0.6

Target 0.02 0.02 0.8
July/August 2008 � Vol. 13�4�4
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sults. Scattering properties were assumed homogeneous in
this part of simulation to simplify this problem with chro-
mophore contrast at different positions. Simulation with scat-
tering contrast is discussed later. Figure 2�a� shows the direct
spectral reconstruction with a circular mesh, which was ana-
lyzed using three different types of data. Although artifacts
and blurring of the boundary can be seen, the FD case using
31 wavelengths yields less noise in the background as com-
pared to the other two cases. Increasing the wavelength band-
width improves the water image significantly, as shown in
both the cw and FD 31 wavelength cases. This results because
the main feature in the spectrum of water occurs above
850 nm, so longer wavelengths increase the weight of water
relative to HbO2 and Hb in the reconstruction.36 Figure 2�b�
shows the same example with spatial information incorpo-
rated into the reconstruction using hard priors. The recovery
error in the three chromophore targets and the dependence of
the water image on HbO2 contrast appear in bar graphs in Fig.
2�c�. As indicated in Figs. 2�b� and 2�c�, the cw and FD re-
sults with 31 wavelengths show significant improvement in
the recovery of HbO2 and water, and a decrease in the depen-
dence between them. Using multiple wavelengths has been
suggested as one way to solve the nonuniqueness of the in-
verse problem when using cw data.37 As shown here, chro-
mophores have little cross talk into scattering amplitude,
while they have significant cross talk in scattering power,
even with spatial information and spectral constraints. This
occurs because scattering power is more sensitive to noise as
compared to other parameters.38 The ability to uniquely re-
solve scatter power from continuous wave data alone appears
poor at this point, but further study of this issue is needed to
make clear conclusions, and the result will likely depend on
the complexity of the scatter power variations in the imaging
field.

A breast mesh with layered structure and complex bound-
aries �Fig. 1�b�� was generated from MRI images to simulate
realistic clinical situations. The simulation parameters for this
example are listed in Table 2. Figures 3�a� and 3�b� are the
spectral reconstruction results without and with prior spatial
information, respectively. Compared with the simple geom-
etry, the contrast of targets was chosen to be the same as Fig.
2. The results in Fig. 3�a� are not as good as the circular case
in Fig. 2�a� because of the complex boundary and internal
structure of a realistic breast. It is difficult to identify the
targets in the six wavelength FD case. The cw image with 31
wavelengths smoothes the water image results but does not
improve the chromophore recovery, while the FD case with
31 wavelengths shows better localization and smoother im-
ages of the chromophores. Thus, the results in Fig. 3�a� indi-
cate that for complex geometries, frequency domain data with

Table 2 Parameters of simulation example in Fig. 3.

HbO2 �mM� Hb �mM� Water �%�

Adipose 0.006 0.004 0.5

Glandular 0.01 0.01 0.6

Target 0.02 0.02 0.8
ig. 2 �a� Direct spectral reconstruction images of a circular geometry.
he top row �1� shows the true values of the background and targets.
he second, third, and fourth rows present reconstruction results
ased on: �2� frequency domain �FD� data from six wavelengths, �3�
w data from 31 wavelengths, and �4� FD data from 31 wavelengths.
b� Direct spectral reconstruction images using hard priors. Perfect
egmentation is assumed in terms of region size and location. Top row
1� shows the true values as in �a� The lower three rows show the hard
rior reconstructions with: �2� FD data from six wavelengths, �3� cw
ata from 31 wavelengths, and �4� FD data from 31 wavelengths. �c�
rrors in recovered properties of HbO2, Hb, water, and cross talk in
he water image from HbO2 contrast using hard priors. The cross talk
s defined as the error in the recovered value of water, at the position
f HbO2 contrast.
July/August 2008 � Vol. 13�4�5
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more wavelengths is important for better reconstruction. Re-
construction is shown to be improved significantly in Figs.
3�b� and 3�c� from the incorporation of prior spatial knowl-
edge. Similar to the simple circular geometry, the FD data
from 31 wavelengths produce the best images in terms of
quantification of targets and increasing the independence of
the individual chromophore estimates.

3.2 Impact of False Prior Information
In clinical studies, perfect structural information may be un-
likely because of the low specificity of breast MRI, or even
worse, areas that are falsely identified as tumor regions could
occur. To complete a preliminary analysis of how this phe-
nomenon might impact the images, some false positive abnor-
mities were created that may not have NIR features. In this
case, those regions will be falsely assumed to exist as prior
spatial information in the NIR reconstruction, which may
cause errors in the estimation of chromophore and scattering
parameters. Figure 4�a� simulates a false positive cyst as a
region with a high concentration of water but no hemoglobin,
and a tumor region with contrast at all chromophores and

Fig. 4 �a� Spectral reconstruction images with a simulated false posi-
tive cyst. Top row �1� shows the true values of background and three
targets of chromophores and cyst. Lower rows show reconstruction
results based on: �2� FD data from six wavelengths, �3� cw data from
31 wavelengths, and �4� FD data from 31 wavelengths. �b� Recovered
error in water and cyst values and cross talk in the HbO2 image from
the simulated cyst region.
ig. 3 �a� Direct spectral reconstruction images of a two-layer �adi-
ose and glandular tissue� MRI-based geometry. The top row �1�
hows the true values of background and targets. The lower three
ows show reconstruction results based on: �2� FD data from six wave-
engths, �3� cw data from 31 wavelengths, and �4� FD data from 31
avelengths. �b� Spectral reconstruction images of the two-layer
reast geometry with hard priors. Exact region segmentation is as-
umed. The top row �1� shows the true values of background and
argets. The lower three rows show reconstruction results based on:
2� FD data from six wavelengths, �3� cw data from 31 wavelengths,
nd �4� FD data from 31 wavelengths. �c� Errors in recovered proper-
ies of HbO2, Hb, water, and cross talk in water image from HbO2
ontrast in �b�.
July/August 2008 � Vol. 13�4�6
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cattering properties. The simulation parameters are listed in
able 3. The cyst presents contrast in the MRI image, making

t a common false positive in NIR spectroscopy. The recovery
rror in water, cyst, and the dependence on HbO2 is shown in
ig. 4�b�. The FD case involving 31 wavelengths again leads

o the least amount of cross talk and the most accurate esti-
ation of the concentration of water and cyst.

.3 Experimental Studies
he simulation examples show that incorporating more spec-

ral constraints with spatial priors should optimize NIR spec-
roscopy in terms of improving the accuracy of the estimation
f the concentration of chromophores and decreasing the de-
endence between them. The effects of introducing a false
ositive region are also evident, albeit limited in impact when
any wavelengths are used. These results can be used to

uide the design of the hardware setup of an imaging system.
sing a Ti:sapphire laser, multiwavelength frequency domain
easurements can be acquired over the range of 690 to
40 nm through PMT detection. The phantom used in this
tudy is shown in Fig. 5. Total hemoglobin �Hbt� in the back-
round of the gelatin phantom was 15 �M. Blood with
0 �M of Hbt and 1% intralipid was put in the holes to create
n imaging target, as shown in Fig. 5�a�. Figure 6 shows the
imulation results based on this gelatin phantom design. The
osition of two targets was chosen based on the gelatin phan-
om shown in Fig. 5�a�. Since the information about blood in
he experiment is total hemoglobin, the contrast of targets and
ackground are displayed with the same total hemoglobin
oncentration as in the experiment. The Gaussian-distributed
oise was assumed to be 2% in amplitude and 1% in phase.
hree different wavelength sets were used for spectral recon-
truction, based on the sampling wavelengths in experiment.
xperimental spectral reconstruction results using the same

hree sets of wavelengths are shown in Fig. 6�b� and a cross
ectional profile of Hbt is presented in Fig. 6�c�. Although any
avelength between 690 to 850 nm can be chosen for detec-

ion, the final sampling wavelengths were limited by issues
nherent in the present experimental setup. Only those wave-
engths at a stable lock-in detection frequency condition could
e used for measurement, and the Ti:sapphire laser does have
pecific wavelengths where the frequency lock is less stable
han others. The experimental details will be discussed in an-
ther more detailed instrumentation study, yet even so, at least
wice the number of wavelengths in the PMT detection range
an be taken in this Ti:sapphire-based system compared to our
xisting diode laser system. As shown in Fig. 6�b�, the two
argets are hardly evident in the four and six wavelength cases
ithout spatial information, whereas the reconstruction from

Table 3 Parameters of

HbO2 �mM� Hb�mM�

Adipose 0.006 0.004

Glandular 0.01 0.01

Target 0.03 0.03
ournal of Biomedical Optics 041305-
12 wavelengths of data estimates the locations of the two
targets of Hbt very clearly. The results from the 12 wave-
length case also show smoother images of the other chro-
mophores and scattering parameters. The cross sectional pro-
file indicates that the recovered Hbt concentrations are
inaccurate in the four and six wavelength cases, while the
values from the case with 12 wavelengths of data are much
closer to the true results. The experimental total-hemoglobin
result with 12 wavelengths is quite consistent with the simu-
lation in Fig. 5. Since the impact of systematic error is usually
hard to predict in the realistic experimental process, the com-
parison between experiment and simulation is fair. The simu-
lation indicates that promising results are possible with low
noise dependence in the case of more wavelengths. Figures
6�d� and 6�e� show spectral reconstruction with prior region
information. Here, the Hbt images from four and six wave-
lengths of data were improved significantly compared to Fig.
6�b�. The cross sectional results again show that 12 wave-
lengths of data produce a better target contrast due to the
improvement in the recovery of background values.

4 Discussion
The analysis of imaging with diffuse light shown in Figs. 2
and 3 illustrates the possible improvements with 1. added
wavelengths, 2. frequency domain versus continuous wave
data, and 3. spatial prior information. While most of the im-
ages in Fig. 2 appear comparable, accuracy in the water and
scattering images is more difficult to achieve. Quantification
improves as more wavelengths are used, and as FD data are
made available; however, errors near 13% in water quantifi-
cation and well over 25% in scatter power remain. Simula-
tions performed on the more realistic breast geometry in Fig.
3 produce similar results, except that the background noise is
considerably higher. Again, adding more wavelengths and us-
ing FD versus cw data generally improves all images. The
addition of spatial priors improves the accuracy of recovery of
the parameters in the predefined regions. The error in water
concentration is about 15% for FD data with six wavelengths;
this decreases to less than 10% as more wavelengths of cw
data are used, and it is reduced to 1% when FD data with
many wavelengths is introduced. Similar trends were ob-
served in the error behavior associated with the dependence of
the water image on HbO2 contrast, which was decreased from
about 12 to 3%. Errors introduced by false positive regions
identified in MRI are an important consideration for MRI-
guided NIR spectroscopy. The technique must be sufficiently
accurate in the face of these regions to estimate their true
properties. The results shown in Fig. 4 indicate again that

tion example in Fig. 4.

r S-Amp.
�10−3b�mm�b−1� S-power

Cyst
�%�

0.8 0.8 —

1 1.2 —

1.2 1.4 0.9
simula

Wate
�%�

0.5

0.6

0.8
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any wavelengths and frequency domain data would always
e superior.

In the experimental validation of the simulation findings,
he improvement with more wavelengths is apparent, as is the
mprovement with spatial prior information. The values of
ater for different cases are consistent between the diffuse

econstruction and the spatial prior reconstruction. The scat-

ig. 5 �a� Gelatin phantom �r=44 mm� with two holes of radii 18 an
umbers of wavelengths are shown in �b�, where row �1� involves four
695, 710, 750, 780, 800, and 830 nm�, and row �3� involves 12 w
30 nm�. Cross sectional values of Hbt �along the line shown in �b�
mages using hard-prior region information from datasets with 4, 6, an
or all three wavelength sets.
ournal of Biomedical Optics 041305-
tering power of the spatial reconstruction has very low values
with high region errors, especially with four and six wave-
lengths, which are related to the high sensitivity to noise and
potential error introduced in region estimation. Unfortunately,
in the case of reconstruction with spatial priors, the scatter
power is still in error well over 30%, making it unclear how
accurately this parameter can ultimately be recovered. An-

m, respectively. Direct spectral reconstruction images with different
ngths �695, 750, 800, and 830 nm�, row �2� involves six wavelengths
gths �695, 700, 710, 725, 735, 750, 770, 780, 800, 810, 820, and
own in �c� for all three wavelength sets. �d� Spectral reconstruction
avelengths, respectively. �e� Cross section of Hbt in the images in �d�
d 20 m
wavele
avelen

� are sh
d 12 w
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ther difficulty in validating scattering properties is the limi-
ation of our ability to accurately quantify them in controlled
xperiments. As in the gelatin phantom experiment, the scat-
ers in the background is TiO2 powder, while scatters in the
arget solution are Intralipid. The simulation results in Fig. 4
hows smooth image of scattering amplitude, and scattering
ower shows relatively higher error, as in other examples.

The question of wavelength selection has been investigated
n the cases of frequency domain and continuous wave
ata.36,37 The essence of spectral reconstruction was to quan-
ify different chromophores as independently as possible with
ufficient spectral information. The simulation and experi-
ental results are consistent with the findings from previously

ublished work, and indicate that an increased number of
avelengths within a fixed range would be superior. Expan-

ion of this wavelength range to longer values, albeit with
nly cw light transmission, is under investigation and may
ead to further improvements. However, for now, it has been
hown that a frequency domain measurement with up to 12
avelengths is possible, and provides a superior dataset for

mage-guided spectroscopy of tissue, as compared to the ex-
sting six wavelength approach, or to a cw approach limited to
50- 850-nm range. As mentioned previously the combination
f additional wavelengths will be further explored both theo-
etically and experimentally, when the experimental system to
est this has been completed.

Conclusions
n conclusion, simulations with different geometries and ex-
erimental gelatin phantom studies show the need to improve
IR spectroscopy by maximizing broadband wavelength in-

ormation used in spectral-based recovery, even when using
rior spatial information from other clinical modalities. The
ccuracy of the chromophore estimates can be improved and
he potential false positive regions can be better eliminated
hen using spectral reconstruction with maximal spectral

ontent. The experimental data also indicate that there is a
otential advantage of spectral reconstruction in limiting the
ackground variation in otherwise homogeneous regions of

ig. 6 Simulation of two-target phantom with known contrast in total
emoglobin �Hbt�. Row �1� involves four wavelengths �695, 750, 800,
nd 830 nm�, row �2� involves six wavelengths �695, 710, 750, 780,
00, and 830 nm�, and row �3� involves 12 wavelengths �695,
00,710, 725, 735, 750, 770, 780, 800, 810, 820, and 830 nm�.
hese choices match the experimental study shown in Fig. 6.
ournal of Biomedical Optics 041305-
tissue. The simulations provide important guidance for system
development. A new Ti:sapphire-based system has been de-
veloped to validate the need for inclusion of many wave-
lengths of frequency domain data not previously possible due
to a limited range of wavelengths that can be obtained com-
mercially with diode lasers. The next step is to extend the
spectral range to higher wavelengths, possibly with a combi-
nation of cw and FD detection, which should improve the
water estimation accuracy.
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