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Abstract. Image filtering is a very important task in any image-
processing system, since the output of the filtering constitutes the
primary input to high-level vision, which then utilizes domain-specific
knowledge to interpret and analyze the image contents. We propose
a new approach to filtering the noise of a stream of thermographic
line scans. The filter is designed to be applied in real time and is
divided in two components: an intrascan filter and an interscan filter.
The intrascan filter is based on spatial overlapping which occurs
when using high acquisition rates. The interscan filter is based on
edge detection and is able to adapt the way it produces the filtered
output based on the detected edges. A procedure to automatically
tune the parameters of the interscan filter is described and applied.
The results of the proposed filters are compared to those obtained
using the average and the median filter. In addition, the real-time
performance of the proposed filters is analyzed by measuring the
time taken by the tasks involved in their application. © 2008 SPIE and
IS&T. [DOI: 10.1117/1.2952844]

1 Introduction

In any image-processing application, noise filtering is of
primary importance. The main objective of noise filtering is
the removal of noise from the image. The filtered image
constitutes the primary input to high-level vision, which
then utilizes domain-specific knowledge to interpret and
analyze the image contents. The presence of noise reduces
the quality of images and, consequently, can significantly
decrease the accuracy of subsequent steps, such as feature
extraction or pattern recognition.

There are many causes for noise in images. The most
common is imperfections in image sensors. These produce
images that are affected by the corruption caused by photon
shot noise and dark-current shot noise.® As well as this t pe
of noise, transmission through communication channels™ or
signal representation errors are also quite frequent causes of
noise.

In thermographic images, the values of pixels represent
temperature levels rather than of luminance levels, as is the
case in images taken from the human visible spectrum.
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Thermographic acquisition devices measure the energy
emitted by an object in the infrared spectrum. Using Planck
radiation equations, the measured energy is converted to
temperature levels using knowledge about the emissivity
properties of the object. Noise is present in thermographic
images for the same reason outlined above. However, un-
like cameras operating in the visible spectrum, thermo-
graphic acquisition devices have not been mass produced.
This means much lower research investment and, thus, big-
ger, weightier and more expensive devices of significantly
lower quality than that of visible spectrum cameras.’ There-
fore, noise caused by imperfections in image sensors is
much higher in thermographic images. In addition, there is
a common cause of noise in thermographic images that
does not exist in images taken from the visible spectrum:
the variation of emissivity.6

Emissivity is a fundamental parameter to carry out the
conversion from measured energy to temperature because it
defines the capability of a material to absorb and radiate
energy. However, it is very difficult to establish the emis-
sivity parameter of an object accurately; normally, the
emissivity properties of the object are constant over its en-
tire surface and can change with different temperature lev-
els. The most common approach is to use a rough estima-
tion, which is inevitably translated into noise in the
acquired thermographic image. The problem of emissivity
variations is even greater when thermographic images are
taken in industrial environments where products, such as
oil or water, are sprayed on materials such as steel to cool
them, altering the emissivity of the surface.

In order to filter noise in images, many different tech-
niques have been developed.7 The most commonly used are
linear techniques,8 which consist of applying an operation
through a window W,, that moves over the image, as can be
seen in (1). If all the weighting coefficients, a;, have the
same constant value, the filter is equivalent to replacing the
value of a pixel with the average value of the pixels in a
surrounding window. This filter is optimal for reducing ran-
dom white noise.” The reason is that, because the noise
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trying to be reduced is random, none of the input points are
special; each one is just as noisy as its neighbor. Therefore,
the optimal choice is to treat them equally,

?ila,-x[i]

>
ylil= S il e W, (1)

As filters based on linear techniques smooth the image,
they also blur its boundaries (edges), which contain impor-
tant information about the image regions. The larger the
window size is, the more marked this effect is. On other
hand, nonlinear techniques, such as the median,lo can filter
noise and preserve image boundaries but fail to remove
Gaussian or uniformly distributed noise effectively.

In order to filter noise while preserving the integrity of
edges and detailed information regarding signal changes,

much work has been published.”f14 These papers deal
mainly with nonlinear approaches, which provide more sat-

isfactory results than linear techniques.15 Among them,
some of the most popular filtering schemes are based on
orderstatistics,16 which can take different forms, from the
median to the arithmetic mean.

A common drawback of linear and nonlinear techniques
is that they require a priori knowledge about the amount of
noise in order to make the optimal choice of filtering pa-
rameters. Alternatively, an autoadaptive layer, which adapts
the performance of the filter based on the properties of the
image being processed, can be added to the filter. Examples
of adaptive filtering algorithms are the least-mean-square
and recursive least-squares approaches.17 The major incon-
venience of these approaches is their slow convergence.

Another aspect of filtering noise in images is the tempo-
ral constraints of the filtering task; that is, the design of the
filtering step when this task is time constrained. This is
particularly important when adaptive filters are applied to
images, because some adaptive schemes require the execu-
tion of computationally demanding algorithms. Existing
technology has often turned to simplifications and modality
specific optimization in order to sustain the expected per-
formances.

In this work, a real-time adaptive method for noise fil-
tering is proposed. The method is designed to remove noise
from a stream of thermographic line scans. However, most
of the work presented in this paper is totally applicable to
any general linear image-processing application in real
time. These processing applications are normally used to
inspect a moving object. The filter is divided in two steps:
a filtering process within each line scan based on spatial
overlapping, and an adaptive filtering process between suc-
cessive line scans to smooth the final two-dimensional im-
age while preserving the integrity of edges. Both steps are
designed to be applied by a low-cost computer in real time
with the acquisition process.

This paper is organized as follows: Section 2 describes
the acquisition process for thermographic images; Sec. 3
presents the proposed new approaches for noise filtering in
this kind of images; Sec. 4 discusses the experimental re-
sults by comparing them to average and median filters; Sec.
5 analyzes the real-time performance of the proposed ap-
proach, and finally, Sec. 6 reports conclusions.

Journal of Electronic Imaging

033012-2

" Infrared
line scanner

Target beam

Hot

object
.. Temperature sample

Direction of &

movement

Measurement line

Fig. 1 Operation of an infrared line scanner.

2 Acquisition of Thermographic Images

The thermographic images considered in this work are ob-
tained using a high-speed infrared line scanner (IRLS),
which is a continuously turning pyrometer. The IRLS mea-
sures the energy radiated by the surface of an object. Using
Planck radiation equations, the measured energy is con-
verted to an analog signal that represents the temperature.
At every turn, the IRLS generates an analog signal that
represents the temperature of a measurement line across the
object, perpendicular to the direction of movement. Figure
1 shows an overview of the operation of an IRLS.

The analog signal generated by the IRLS at every turn is
sampled by a computer, resulting in a line scan, that is, a set
of samples that correspond to the temperature measure-
ments of a segment across the object. Figure 2 shows ex-
amples of consecutively acquired line scans from a hot
steel strip moving forward along a track. In the line scans
of Fig. 2, noise can clearly be seen. The origin of this noise
is mainly due to the emissivity variations caused by cooling
products sprayed on the steel strips during their manufac-
turing.

Repetitive line scanning and the movement of the object
make the acquisition of a rectangular image possible. The
image obtained consists of a sequence of line scans. An
example can be seen in Fig. 3, which shows a thermo-
graphic image taken from the same hot-steel strip from
which the line scans of Fig. 2 were taken. The line scans of
Fig. 2 were taken at several positions (shown at the top of
each line scan) along the steel strip. The thermographic
image in Fig. 3 is a representation of the sequence of ac-
quired line scans, each of them constituting a column of the
image, and where the temperature level is represented using
a color scale. Images formed as a sequence of line scans
can contain information about very long objects. For in-
stance, the thermographic image in Fig. 3 contains 70,000
line scans that represent a steel strip nearly 12 km long.
More information about the acquisition and the structure of
the thermographic images can be found in Ref. 6.

By using infrared linear scanners rather than an infrared
camera that takes two-dimensional (2D) images, extremely
long moving objects, such as steel strips, can be inspected
effectively.lg It is interesting to note that the formation of
the image based on a stream of line scans is very similar to
the one carried out using linear cameras that take images in
the visible spectlrum.20 The main difference is that when
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Fig. 2 Thermographic line scans taken from a hot steel strip.

using the infrared line scanner there is only one tempera-
ture sensor, which reduces costs. Furthermore, the analog-
to-digital (A/D) conversion is carried out in the computer,
while the modern visible spectrum linear cameras have an
array of luminance sensors that carry out the A/D conver-
sion, providing a digital signal representing the line scan.

A particular feature of these thermographic line scans is
that the number of samples obtained in every line scan
depends on the acquisition rate used in the A/D converter
installed in the computer. When the acquisition rate of the
A/D converter is high, the temperature at a specific position
can be measured by several adjacent samples, that is, spa-
tial overlapping occurs. The higher the acquisition rate is,
the greater the overlapping is.

2.1 Noise Filtering

The noise-filtering proposal in this paper consists of the
application of two independent filters: a filtering process
within each line scan, called intrascan filtering (in the ver-
tical direction of the 2-D image), and an adaptive filtering
between successive line scans, called inter-scan filtering (in
the horizontal direction of the 2D image). The reason for
using an independent filter in each direction rather than a
bidimensional filter is that the samples of the 2-D image are
not at the same distance in the vertical and horizontal di-
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rections. The distance between adjacent samples within the
same line scan (vertical direction) is approximately con-
stant, but the distance between adjacent samples in succes-
sive line scans (horizontal direction) varies with the speed
of the object and can be 30 times greater than the vertical
distance.

One of the major issues of any filtering strategy is the
decision about what should be filtered and what not. Some-
times, smoothing a signal is effective because it reduces
noise; whereas in other cases, this can lead to the loss of
valuable information. The strategy proposed in this paper is
based on two steps, each of them with a different objective.
The filtering strategy is illustrated in Fig. 4. The acquisition
process obtains line scans periodically. Each line scan is
filtered independently, and the results are stored in a buffer.
This process is called intrascan filtering. The proposed in-
trascan filtering treats each line scan as an independent en-
tity. Thus, it uses only the information available in a given
line scan for its filtering. This makes the detection and re-
moval of temperature changes caused by emissivity varia-
tions impossible because these could only be detected by
comparing the current line scan to others acquired previ-
ously.

The next step in the proposed filtering strategy is inter-
scan filtering. The objective of interscan filtering is to de-
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Fig. 3 Thermographic image taken from a hot steel strip.
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Fig. 4 Filtering strategy.

tect temperature changes (which are noise in the signal) and
to remove them. To carry out this task, interscan filtering is
applied over several line scans that have been filtered pre-
viously using intrascan filtering, in order to obtain a smooth
and noise-free signal. Below, a detailed description of both
intrascan and interscan filtering is presented.

3 Intrascan Filtering

During line-scan acquisition, a high acquisition rate in the
A/D converter can provoke spatial overlapping of the adja-
cent samples measured. The higher the acquisition rate is,
the greater the overlapping is. Figure 5 shows the result of
using different A/D conversion rates. In the case in the
center, a medium conversion rate is used that provides a
line scan with information about the whole measurement
line. In the case on the right, using a high acquisition rate,
the temperature of a position is measured in several adja-
cent samples; that is, spatial overlapping occurs. In the case
on the left, when the conversion rate is low, only informa-
tion about nonadjacent positions of the measurement line is
obtained.

A classical approach to filtering noise in a line scan is to
carry out the acquisition using a high A/D conversion rate
and later apply a linear or nonlinear filter. Next, a decima-
tion process could be used to reduce the number of samples
in the line scan in order to save storage space in disk or
memory usage. However, to apply this filter, the proper
coefficients must be selected. The approach proposed in
this paper is to acquire the line scan at the highest possible
rate, and then filter this line scan using a set of coefficients
calculated automatically based on the spatial overlapping

A/D conversion rate

Low Med. High

§

Fig. 5 Result of different A/D conversion rate.
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on each position of the measurement line. The result of the
proposed filter is a line scan without spatial overlapping
that covers the whole measurement line, that is, a line scan
similar to the example in the center in Fig. 5, but where
each sample is obtained from multiple samples covering the
same measured space. For example, in a line scan acquired
using a conversion rate double the medium conversion rate
in Fig. 5, the measurement space of a sample overlaps the
measurement space of adjacent samples. This results in
samples that contain temperature information about the
measurement space of their previous sample and about the
measurement space of their next sample. This information
can be used to filter the line scan effectively. The process
can be seen in Fig. 6.

Every sample in the filtered line scan y[i] can be calcu-
lated using the samples from original line scan x, whose
measurement space includes a part of the measurement
space in the sample y[i], that is, the samples of x that over-
lap y[i] (as seen in Fig. 6). This process involves two steps:
first, determining the set of samples in line scan x that
overlap y[i], and second, calculating the weight of each
sample of that set in the calculation of the value of y[i].
This depends on the size of the area intersected of the
samples in x with y[7], in relation to the size of the sample
yli]. From this relationship, a ratio is calculated hereafter
referred to as the ratio of intersection.

Figure 6 shows a simplified view of the measurement
space of each sample. The truth is that the measurement
space of a sample is only circular when the target beam
(Fig. 1) of the sensor is perpendicular to the object (inter-
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Filtered
line-scan

(y)

0 1 2 3

Fig. 6 Intrascan filter based on spatial overlapping.
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Fig. 7 Measurement space of the samples.

section of a cone with a plane parallel to the cone base,
shown in Fig. 7), and this only happens when the sample is
in the middle of the line scan. In other samples the mea-
surement space is an ellipse (intersection of a cone with a
plane not parallel to the cone base, shown in Fig. 7). The
further the sample is from the center of the line scan, the
longer the major and minor axes of the ellipse are. How-
ever, the major semiaxis length increases more than the
minor semiaxis length due to the geometry used by the
IRLS to measure the temperature. The real spatial overlap-
ping process can be seen in Fig. 8.

The problem of the model shown in Fig. 8 is not only
that the size of the measurement space changes from
sample to sample, but that the samples in the line scan are
not equidistant; samples near the center of the line scan are
closer together than samples near the borders of the line
scan.

In order to obtain the ratio of intersection between the
original and filtered samples, the position of each original
sample and its major and minor semiaxes must be known.
This information can be obtained using the procedure pre-
sented in Ref. 21. Using this procedure, from a given
sample, J, the position of the center of this sample, d;, and
the length of the major semiaxis, a;, and of the minor semi-
axis, by, can be calculated. This can be reduced to the geo-
metrical problem of the calculation of the area of intersec-
tion of an ellipse and a circle, which can be seen as the

Original
line-scan

(x)

Filtered
line-scan

AN

Fig. 8 Measurement space of the samples.
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Fig. 9 Intersection between samples.

calculation of the area of a circular segment of an ellipse
plus the area of a circular segment of a circle, as can be
seen in Fig. 9.

The area of a circular segment can be calculated using
(2), where R is the radius of the circle and 6 is the angle of
the segment. To calculate the area of a circular segment of
an ellipse with semiaxes a; and b, the equation is the same
but using a; as R and multiplying the result by the division
between minor and major semiaxes (b,/ay),

A:I%Z[H—sin(ﬁ)]. (2)

To obtain R and 6, the points of intersection between the
circle and the ellipse must be calculated. This can be done
by solving the equation system produced by the equations
of those shapes in the space.

The intrascan filtering proposed involves determining
which samples in the original line scan provide information
about each filtered sample and then using this information
to calculate a filtered value for each sample in the filtered
line scan. This process can be implemented using three
functions:

1. FSI[{]: first sample in the original line scan that in-
tersects with the filtered sample i in the filtered line
scan

2. LSI[i]: last sample in the original line scan that inter-
sects with the filtered sample i in the filtered line scan

3. Al[j,i]: area of the intersection between the mea-
sured space of sample j in the original line scan and
the measured space of the filtered sample i in the
filtered line scan.

Using these functions, the filtered value for the sample i
can be calculated as follows:

SISHAIL ] 5
SESALL]

The calculation of FSI, LSI, and Al for each sample i of
the filtered line scan is a computationally demanding task.
However, these values can be precalculated and stored for
later use. FSI and LSI can be stored in two vectors, and Al
can be stored in a matrix. In this way, the computation
needed to apply the proposed approach is similar to that
required by a convolution.

While the line scan is being acquired, the object whose
temperature is being measured moves perpendicularly to
the scanning trajectory. This means that during the time
elapsed between the acquisition of the first and last samples
of the line scan, the measured object has moved. Following
this reasoning, the proposed model to calculate the ratio of

yli]=
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Fig. 10 Gradient produced by the difference operator.

intersection is not completely accurate, because the mea-
surement line is not perpendicular to the movement of the
object. However, taking into consideration that the usual
acquisition rate of line scans is ~10 m and that the maxi-
mum speed of the object being measured by these kinds of
devices is ~25 m/s, the offset from the first to the last
sample of the line scan is small enough to be considered
insignificant for the calculations.

3.1 Interscan Filtering

The proposed intrascan filtering treats each line scan as an
independent entity. Thus, it uses only the information avail-
able in one line scan for its filtering, which makes the de-
tection and the removal of random temperature changes
caused by emissivity variations impossible. The objective
of interscan filtering is to detect temperature changes that
are real noise in the signal and to remove them. To carry
out this task, interscan filtering is applied over several line
scans, previously filtered using the proposed intrascan fil-
tering, in order to obtain a smooth noise-free signal.

Changes in temperature are due to changes in manufac-
turing conditions over time. For example, in the case of a
steel strip, a reduction in the speed of the rolling process or
excessive pressure on one part of the strip can produce
these changes. A very important aspect of temperature
changes is that they always appear in the direction of the
movement of the object being inspected, that is, in the hori-
zontal direction of the 2-D image. This can be used by the
interscan filtering process to distinguish deterministic tem-
perature changes that must not be removed from those that
are considered noise.

The proposed method to detect deterministic tempera-
ture changes is by means of boundary detection, which in
this case is accomplished through real-time edge detection.
Edges mark discontinuities that shall not be removed. On
the other hand, changes where edges have not been found
indicate noise that must be removed.

The steps for the proposed edge detection are based on
the calculation of the gradient in real time. Then, the gra-
dient is projected and thresholded to simplify edge detec-
tion. Finally, the position of the edges detected in real time
is used to calculate an adaptive average by means of a
window whose size grows from one edge to the next. The
steps are described below.
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3.1.1  Calculation of the gradient

The gradient of an image is obtained as the result of the
convolution of the image with a gradient operator. When
choosing a gradient operator, three important parameters
must be carefully selected: the direction, the size, and the
shape. The fact that the edges will only be searched in the
direction of the movement of the object makes the selection
of direction and size easier. The direction of the operator
will be the same as the movement, that is, horizontal in Fig.
3. Furthermore, the size, normally defined as A rows by B
columns, can be simplified as 1 X B, since only the modifi-
cation of the number of columns of the operator (B) will
make significant changes to the resulting gradient due to
the searched direction. To simplify the next operations, N,
defined as (B—1)/2, will be used when referring to the
operator length.

To calculate the gradient, the difference operator
(-1...-1 0 1...)% is selected. To apply the difference op-
erator (Dif), a convolution operation can be used. However,
because the application of the difference operator in one
pixel corresponds to the calculation of the difference be-
tween two averages, it can also be applied using Eq. (4),
where P[i,j] is the pixel j of the line scan i,

i PIj] - EEnPlk]
N N ’

>

Dif _Grad[i,j]= 4)

Equation (4) can also be seen as (5), the difference be-

tween the next and previous window (size N), where
AP[f,1,j] is the average pixel j from the line scan f to f,

Dif Grad[i,j]=AP[i+ 1,i+N,j]- AP[i-N,i—1,j]. (5)

Using the recursive definition of the average, Eq. (6) can
be proposed for the calculation of AP, which makes it pos-
sible to calculate the operator recursively, therefore requir-
ing a low number of operations,

Plb.j]-Pla—1,j
APla.b.j]= APla—1.b—1.j]+ D= Pla=Lil = o
b—a+1

The filtering process must be applied in real time. This
means that the time necessary to calculate the gradient in a
line scan will be a part of the total time necessary to pro-
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cess a new acquired line scan. Therefore, the best operator
for the gradient calculation is the difference operator, which
needs far fewer mathematical operations than the convolu-
tion.

The calculation of the gradient uses information from
line scans acquired previously and from the future. The
only possibility to calculate the gradient using a window
centered in the current line scan is to delay the calculation
until there is enough information to create that window of
line scans. This process delays the calculation of the gradi-
ent and, consequently, delays the possible detection of an
edge. However, this delay (<1 s) is insignificant for most
applications.

Figure 10 shows the gradient produced by the difference
operator (using N=100) when applied to the thermographic
image shown in Fig. 3.

3.1.2 Projection of the gradient

The next step is the projection of the gradient, which sim-
plifies the thresholding that must be carried out to eliminate
noise from the gradient. This projection is carried out using
Eq. (7), where LSL is the line scan length (number of
samples in the line scan). A quadratic projection is used to
eliminate the influence of the sign of the gradient in the
projection,

GradProj[i] = ﬁz (Grad[i,j])*. (7)
j=1

Figure 11 shows the projection of the gradient shown in
Fig. 10.

3.1.3 Thresholding of the projection

Once the projection of the gradient is available, it is thresh-
olded. Thresholding is used to differentiate noise from real
edges. An edge is found when there are data in the projec-
tion over the threshold value, 7. When adjacent edges are
found (adjacent values of the projection over the threshold),
only the edge with the higher value in the projection of all
of the adjacent positions will be considered.

Figure 12 shows an example of the thresholding (using
T=25) carried out over the projection of the gradient pro-
duced by the difference operator (using N=100), as shown
in Fig. 11. As can be seen, the noise is below the threshold
value and edges are obtained from the peaks above it (Fig.
13). Only the highest value of each peak will be considered
to establish the horizontal position of its corresponding
edge. Figure 14 shows the position where edges have been
found on the thermographic image.
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Fig. 12 Thresholding of the projection.
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3.1.4 Tuning of the edge-detection parameters

Two parameters in the edge-detection process must be con-
figured: the operator length, N, and the threshold level, 7.
These parameters determine how the edge-detection pro-
cess is to distinguish between real temperature changes and
noise. Therefore, it is very important that the values as-
signed to them are correct. The most robust tuning method
is by means of a training procedure applied over a set of
images whose edges have been tagged. This tuning method
involves several important tasks:

1. selection of a representative set of images to create
the image test set

2. tagging the edges of each image in the test set, which
creates the ground truth

3. selection of a metric that provides information about
the accuracy of the edge detection process applied
over the test set using specific values of N and T

4. selection of an optimization algorithm that can find
the best values of the two parameters for the detec-
tion of edges in the test set.

The first two tasks involve human work. They can be
carried out by technicians with knowledge of the images
being filtered, and of the expected results. If two or more
technicians tag the edges of the images in the test set, the
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ground truth may be fuzzy. Fuzziness, more than a draw-
back, is an opportunity for the detection metric and the
optimization algorithm to perform better.”>

Edge detection metrics measure the performance of an
edge detector when applied over an image by comparing
the detection results to its ground truth. Several metrics
have been proposed to assess edge detectlon 2 such as the
probability of error, * the ﬁgure of merit,® the R metric,” or
the Jaccard and Yule metrics.”® Some of the proposed met-
rics can take uncertainty into account, such as the success
segmentation ratio (SSR) metric.”

Finally, the optimization algorithm can use the edge-
detection metric as the feedback for the search for the best
values for the configuration parameters. Among these algo-
rithms, support vector machines™ or genetic algorithms28
perform efficiently.

3.1.5 Adaptive filtering from detected edges

The process described to detect edges in the thermographic
image is designed to be applied in realtime, requiring a low
number of computational operations. Information about
edges in the image can be used to produce a filtered output
in realtime. Indeed, changes in the images appear as a con-
sequence of noise or variations of the manufacturing con-
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Fig. 14 Edges in the thermographic image.
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ditions. Because deterministic changes are detected by the
proposed edge detection method, others changes can be re-
moved by applying a smoothing filter.

The proposed filter consists of applying an averaging
filter, beginning at the next line scan after the last detected
edge and finishing at the current line scan. When applying
this filter, the averaging window grows as long as the ac-
quired image does not present an edge, that is, the presence
of a temperature change due to manufacturing conditions.
When an edge is found, the window size for the average
calculation is reset to avoid blurring the edges. During the
transitory state of the image (that is, when the projection of
the gradient is above the threshold), a median filter can be
applied to remove the noise of the slope while preserving
the sharpness of the temperature change. The median filter
is applied recursively to maintain the number of operations
as low as possible.

4 Experimental Results

To test the proposed filtering approach, several thermo-
graphic images have been filtered and compared to two
well-known filtering methods: the average filter and the
median filter. Images have been taken from heated steel
strips in an industrial environment. The infrared line scan-
ner used acquired line scans at 100 Hz, each of them con-
sisting of 833 samples.

4.1 Filtering Tuning

Filters have parameters that determine the way they pro-
duce the output, which normally depends on the usage con-
text. In this case, two filters are applied consecutively; thus,
both of them need to be tuned.

The proposed intrascan filtering does not have param-
eters. It calculates the output based on the spatial overlap-
ping of the input. However, in order to calculate the spatial
overlapping ratio of each sample, the position and the size
of each sample must be calculated. These data requires only
one basic piece of information: the distance from the infra-
red line scanner to the object. Using this value, the neces-
sary tables to store the filtering coefficients are built.

To obtain the proper values for the two parameters
needed: the operator length, N, and the threshold level, T,
an automatic tuning process, based on the rules described
above, was carried out. First, several technicians tagged
deterministic temperature changes of a set of images, cre-
ating the ground truth. Because not all of the technicians
agreed on all of the temperature changes, the ground truth
was defined under uncertainty. A genetic algorithm was
used to find the best parameter set for edge detection. The
feedback of the genetic algorithm (that is, the objective
function) was the SSR metric, which is able to provide
information about the performance of the segmentation
when the ground truth has been defined under uncertainty.
Finally, the optimal values obtained were 118 for N and 27
for T.

4.2 Intrascan Filtering Results

Figure 15 shows the results of the proposed intrascan fil-
tering approach applied to several examples of line scans.
The left column shows the line scans, and the right column
shows the resulting filtered line scans. The first line scan
used in this experiment (first row) is an unmodified line
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scan acquired from a hot steel strip. The next three line
scans are a copy of the first line scan corrupted with differ-
ent noise ratios. The second and third line scans have been
corrupted by Gaussian noise with a standard deviation of 3
and 6, respectively. The fourth line scan has been corrupted
with 2% random-valued impulse noise.

It can be seen that the proposed filtering approach based
on spatial overlapping reduces the noise while preserving
the integrity of edges and the detail of the information in
the line scan. The spatial overlapping filtering does not pro-
duce a finely smoothed output; however, it is able to reduce
noise effectively. It is important to take into account that
the most common cause of noise in this kind of thermo-
graphic images are emissivity variations, and this kind of
noise cannot be detected from a single line scan. Therefore,
the lack of smoothing in the first line scan is considered a
success, because a filtering of these slight variations, which
could have been caused from real temperature differences,
could mean losing important information.

The preservation of edges and detailed information has a
drawback: the filter is not able to eliminate high-magnitude
Gaussian noise or impulsive noise completely. However,
this is a minor issue, first, because this is not a very com-
mon noise in thermographic line scans and, second, be-
cause the results of the intrascan filtering will be processed
by the interscan filtering, which can take care of any noise
not eliminated.

Figure 16 shows the results of the average filter and the
median filter applied to the line scans shown in the first
column of Fig. 15. The window size of both filters was
chosen to be 40, 5% of the number of samples in the line
scan. The average filter produces a smoothed output, elimi-
nating all the noise in the line scans. However, the edges
are not preserved and the slight variations in the center of
the line scans are also removed. The median filter also re-
duces noise, but the output lacks the detailed information of
the spatial overlapping filter. Also, the output of the median
filter seems aliased, losing the continuity of the signal in
some parts.

Figure 17 shows a comparison between the original line
scan and the filtered output produced by the spatial over-
lapping, the average and the median filter. Figure 18 shows
the same information but focused on the right edge of the
line scan to see the differences between them more clearly.
The detailed graph clearly shows how the average filter
misses the edge, providing a smoothed slope that blurs the
line scan. The median filter preserves the edge information
but fails to preserve information about some of the varia-
tions of the line scan. On the other hand, the proposed filter
based on spatial overlapping is able to provide accurate
output, preserving the information available in the original
line scan.

The results show that the proposed filter works properly
over line scans with or without noise, preserving the infor-
mation while reducing noise. However, when the noise is
high, the result is not as smooth as the output produced by
the average or the median filter. This drawback is minor
since the output of the filter will be processed in the next
step: the interscan filtering, which can handle noise not
removed by this filter.
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Fig. 15 Line scans filtered using the proposed approach based on spatial overlapping.

4.3 Interscan Filtering Results

Figure 19 shows the results of the proposed interscan fil-
tering approach applied to several examples of thermo-
graphic images. The left column shows the original image,
and the right shows the resulting filtered image. Noise in
the original images is clearly appreciated. Also, it can be
seen how the noise is mostly removed in the resulting im-
age. Furthermore, although the noise is removed, the edges
are totally preserved.

One of the most common causes of noise in this kind of
image is emissivity variation, which distorts temperature
measurements. This kind of noise cannot be removed in the
intrascan filtering, since the only way to detect it is to take
adjacent line scans into account. The proposed interscan
filter, however, is able to detect this kind of noise and to
remove it. Furthermore, temperature changes that corre-
spond to variations in the manufacturing conditions are pre-
served. This can be observed in Fig. 19.

Figure 20 shows the results obtained when filtering the
images in Fig. 19 using the average (left column) and the
median filter (right column). The window size of both fil-
ters match the window size used in the previously proposed
filter. As can be seen, noise is removed. However, when
comparing the output of the proposed interscan filtering
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with the average and median filters, it can be seen that the
noise removal ratio is higher in the proposed approach.

A more detailed comparison can be made between Figs.
21 and 22 which show a blowup of a longitudinal section in
the center of the first image in Fig. 19. The noise of the
original signal is very high, with temperature changes of
20 °C from one line scan to the next. Over this signal, the
longitudinal section of the filtered images obtained using
the proposed approach, the average, and the median are
shown. Noise reduction is clearly appreciable in all of the
three filtered signals. However, the proposed approach does
a better job in the two most important aspects: it removes
the noise caused by the emissivity variations better, provid-
ing a much more smoothed output, and it preserves the
integrity of the edges, providing a sharper output. These
two statements are corroborated in Fig. 22, which shows a
detail of the performance of the three filters on an edge.

5 Real-Time Performance Analysis

The proposed filtering method has been designed to be ap-
plied in realtime. The deadline of the filtering task is im-
posed by the acquisition rate. One line scan must be filtered
before a new line scan is acquired. This approach makes it

Jul-Sep 2008/Vol. 17(3)
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Fig. 19 Thermographic images filtered using the interscan approach. Left column: original, right col-
umn; filtered using interscan.
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Fig. 20 Thermographic images filtered using the average and the median filter. Left column: filtered
using the average; right column: filtered using the median.
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possible to use the filtered output for any purpose, for ex-
ample, to be used as the feedback for a temperature con-
troller.

In order to analyze the viability of the proposed filtering
approach, the time needed by each of the computational
tasks involved was measured. The algorithms were pro-
grammed in C language and measured running in a Core2
Duo E6600 CPU (2.4 GHz) with 4 MB of cache memory
and plenty of RAM. The measuring procedure was as fol-
lows:

1. An experiment consists of the execution of a task 100
times. The average time is then calculated.

2. Each experiment is repeated 25 times. This provides
25 measurements that follow a normal distribution
and where confidence intervals analysis can be
applied.

The results obtained are shown in Table 1.

A typical infrared line scanner, such as the one used to
obtain the images shown in this paper, runs at 100 Hz.
Therefore, a new line scan is acquired every 10 ms, which
determines the deadline for the maximum line scan pro-
cessing time. As can be seen in Table 1, the time necessary
to apply the proposed filter is much lower than the maxi-
mum time available for the line scan processing. This is
mainly due to the design and to the implementation of the
filter. First, the intrascan filter only uses information about
the ration of intersection between samples and all of that
information is precalculated before the filtering operates

Table 1 Time measurements.

Average time Confidence interval at 99%
Task (us) (us)

Intrascan filtering 26.311 [26.297, 26.325]

Interscan filtering 60.819 [59.710, 61.928]
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under real-time conditions. Interscan filtering has been de-
signed to recursively operate the gradient calculation, the
adaptive average, and the median in the transitory sections.
This reduces the number of operations needed to apply the
filter, decreasing the computational cost sharply.

The low computational cost of the algorithms is a great
advantage. Enough time is left for other kinds of tasks dur-
ing the maximum line scan processing time, such as feature
extraction, or communications through a network. Further-
more, it makes the execution in low-end embedded com-
puters possible, while meeting the deadline.

6 Conclusions

In this paper, a real-time noise filtering method for a stream
of thermographic line scans has been proposed. The filter is
divided in two components: an intrascan filter and an inter-
scan filter. The intrascan filter is based on spatial overlap-
ping using high acquisition rates, and the interscan filter is
based on edge detection. Both filters are designed to be
applied in realtime, introducing recursive calculations for
most of the computationally demanding steps. Results ob-
tained corroborate the success of the proposed filtering ap-
proach. Several line scans with different kinds of noise
have been filtered using the proposed intrascan filter, and
the results have been compared to those obtained with the
median and the average. The comparison shows that the
performance of the proposed approach is good. A similar
approach has been used to test the interscan filtering. Sev-
eral images have been filtered, and the results have been
compared to the average and median filters. In this case, the
results show that the proposed interscan approach is able to
provide much better results than the other two. First, it
removes the noise caused by the emissivity variations bet-
ter, providing a much more smoothed output. Also, it pre-
serves the integrity of the edges, providing a sharper out-
put.

The real-time performance analysis shows that the algo-
rithms can be executed to provide a filtered output while
meeting the deadline of the filtering task, which corrobo-
rates the correct real-time design. Also, due to the low com-
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putational cost of the filtering method proposed, it could
even be implemented in low-end embedded computers.

Real-time noise filtering is very likely to find potential
applications in a number of different areas, such as robot-
ics, manufacturing control, or any other application based
on the processing of a stream of line scans in realtime.
Furthermore, even if the proposed method has been de-
scribed for thermographic images, its use with images
taken from the visible spectrum is straightforward.

The proposed filter is being used in a cold rolling mill to
provide the flatness control system with the thermographic
profiles with of the manufactured steel. The filtered infor-
mation received by the flatness control system makes it
possible to regulate of the manufacturing conditions that
produce irregular temperature patterns.
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