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Abstract. Multispectral near-infrared �NIR� tomographic imaging has
the potential to provide information about molecules absorbing light
in tissue, as well as subcellular structures scattering light, based on
transmission measurements. However, the choice of possible wave-
lengths used is crucial for the accurate separation of these parameters,
as well as for diminishing crosstalk between the contributing chro-
mophores. While multispectral systems are often restricted by the
wavelengths of laser diodes available, continuous-wave broadband
systems exist that have the advantage of providing broadband NIR
spectroscopy data, albeit without the benefit of the temporal data. In
this work, the use of large spectral NIR datasets is analyzed, and an
objective function to find optimal spectral ranges �windows� is exam-
ined. The optimally identified wavelength bands derived from this
method are tested using both simulations and experimental data. It is
found that the proposed method achieves images as qualitatively ac-
curate as using the full spectrum, but improves crosstalk between pa-
rameters. Additionally, the judicious use of these spectral windows
reduces the amount of data needed for full spectral tomographic im-
aging by 50%, therefore increasing computation time dramatically.
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Introduction

ear-infrared �NIR� diffuse optical tomography is a noninva-
ive imaging technique used to obtain pathophysiological im-
ges of biological tissue. Using this technique, NIR light be-
ween wavelengths of 650 and 930 nm is injected into the
xternal surface of tissue and the emergent light is measured
long the tissue boundaries. These “boundary” data are then
sed with a light propagation model to predict the internal
hromophore concentrations of soft tissue such as hemoglo-
in, oxygen saturation, and water content, as well as scatter-
ng properties.1–4 Although NIR light suffers from high scat-
ering within tissue at these wavelengths, diffuse NIR optical
maging has shown its potential as a tool for quantifying brain
unction activity.5 as well as breast cancer characterization
nd detection.1,6–8 The issue of which spectral bands and mea-
urement data types to use has been a point of continuous
ebate in the field, and our study applies the original and
nique method presented by Corlu et al.9 to broadband data
election to examine which spectral windows present the
nique data needed for spectral image reconstruction.

There are three common methods used for the collection of
IR transmission data: continuous wave, time domain, and

ddress all correspondence to Matthew E. Eames, School of Physics, University
f Exeter, Stocker Rd., Exeter, Devon EX4 4QL, United Kingdom. E-mail:
.e.eames@exeter.ac.uk
ournal of Biomedical Optics 054037-
frequency domain.10 Of these methods, continuous wave �cw�
systems are the most cost effective and easiest to implement,
where only the intensity of the emergent NIR light is mea-
sured at a given wavelength. Using cw systems, no informa-
tion about the path length of NIR light within tissue is mea-
sured. Time-resolved systems are the most expensive, since
they rely on photon counting systems and suffer from long
data integration times,11 but can potentially provide absolute
information regarding the total signal intensity as well as pho-
ton propagation time by means of measuring the temporal
point spread function �TPSF�. Alternatively, frequency do-
main systems take advantage of amplitude modulated signals
to measure both the intensity and phase of the boundary data,
providing information regarding the average path length of
the measured photons in tissue.12 Although it has been shown
that the absorption and scattering properties at a given wave-
length cannot be separated using continuous wave data alone
without a priori information,13 recent work in spectral imag-
ing has shown that by using spectral constraints using cw
data, it may be possible to resolve chromophore concentra-
tions directly, using an optimum set containing a finite num-
ber of wavelengths.9 This original work by Corlu et al.9 dem-
onstrated that by using spectral reconstruction and wavelength
optimization, it is possible to overcome the nonuniqueness
problem observed in cw measurements.

1083-3668/2008/13�5�/054037/9/$25.00 © 2008 SPIE
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In this work, a method is presented to examine the viability
f using large cw datasets containing many wavelengths to
chieve a unique solution with minimal crosstalk between
hromophores. Other tomographic studies to date have re-
tricted spectral reconstruction to using datasets of five or six
avelengths for image reconstruction due to technical

imitations.14,15 Although a set of five or six wavelengths will
e computationally faster, the use of more wavelengths in-
reases the amount of information available and is considered
mportant in constraining the inverse problem further, such
hat crosstalk between chromophores can be reduced, which
an be especially important for systems or wavelengths �such
s 650 or 950 nm, where absorption by deoxyhemoglobin and
ater dominate� with higher measurement noise. The mea-

urement of cw data over the entire range of NIR wavelengths
s currently limited using most experimental systems avail-
ble. The use of two or more wavelengths has been used
ithin a time domain system,16 as well as five or six discrete
avelengths using frequency domain systems.7,11 More re-

ently, a cw system allowing the complete spectral measure-
ents of NIR data for small animal imaging system has also

een developed,17 allowing dual modality MRI and NIR data
ollection for the study of small animal brain physiology.
owever, to date, there has been little work into the investi-
ation of an optimum set of wavelengths to provide a unique
nd well-conditioned solution, under the assumption that
oundary data are available at all wavelengths between 650
nd 930 nm.

The methods proposed by Nielsen and Brendal18 and Corlu
t al.9 are used as the basis of the presented study. Rather than
estricting the image reconstruction to the best five or six
avelengths that provide a better conditioned problem, a
ethod is proposed that finds ranges, or “windows,” of wave-

engths over the entire spectrum, which contribute to produc-
ng highly conditioned and unique images.

Theory
or model-based image reconstruction, an accurate forward
odel is required that predicts the path of photons within

issue and a reliable inverse model, which gives a unique set
f optical parameters based on some boundary measurements.
he transport of light through tissue can accurately be de-
cribed by the diffusion approximation to the radiative trans-
ort equation when the detectors are placed more than three
cattering lengths away from the sources, and where light
ropagation is dominated by scattering events.2 For continu-
us wave light, the diffusion equation can be written as

− � · ��r� � ��r� + �a�r���r� = q0�r� , �1�

here � is the diffusion coefficient, �=1 /3��a+�s��, � is
he fluence rate, �a is the absorption coefficient, �s� is the
educed scattering coefficient, �s�=�s�1−g�, where �s is the
ransport scatter and g is the anisotropic factor �set as 0.9 for
oft tissue�, and q is an isotropic source modeled as one scat-
ering distance inside �1 /�s�� the external boundary.

Given a set of optical parameters, the diffusion equation
an be used to calculate light distribution within a domain and
ence the boundary data. For complex geometries, the diffu-
ion equation is difficult to solve analytically, so numerical
ournal of Biomedical Optics 054037-
solutions such as the finite element method �FEM� can be
used as a flexible approach to the forward problem.1

To solve the forward problem, the distribution of the opti-
cal parameters �a and � must be known. However, a multi-
spectral model can relate the wavelength dependence of the
optical parameters with concentrations of oxygenated hemo-
globin �HbO2�, deoxygenated hemoglobin �Hb�, water �H2O�
fraction, and scattering properties.3,9 The absorption coeffi-
cient can be calculated from the chromophore concentrations
�c� and published extinction coefficients ���.19 From Beer’s
law, the absorption at a given wavelength is given by a linear
summation of the contributions from each absorber, which has
a known extinction spectra, and the concentration c is to be
estimated from the absorption spectra,

�a��i� = �
n=1

N

�n��1�cn. �2�

Here, N is the number of chromophores and i is the wave-
length number.20 The reduced scattering parameter is given by
the empirical formula, given by

�s���� = A�−b, �3�

where A is the scattering amplitude and b is the scattering
power.4

The inverse problem has the aim of recovering the distri-
bution of optical parameters in tissue given a set of boundary
data at a given wavelength. This is achieved by reducing the
difference between the measured data �M and the calculated
data �from the forward model� �c. The image reconstruction
algorithm minimizes this objective function,

� = �
min��

i=1

NM

��i
M − �i

C�2� , �4�

where � is the optical parameters to be reconstructed and NM
is the number of measurements. � is known as the projection
error and gives a value with which the convergence of the
inverse model can be determined. However, the inverse prob-
lem is nonlinear and illposed due to the large number of un-
knowns. Assuming that the initial estimate of the optical prop-
erties is close to the actual optical properties, this inverse
problem can be linearized by minimizing Eq. �4� with respect
to the optical parameters and only keeping the first-order
terms. This gives the iterative equation

�JTJ + �I�−1JT�� = �� . �5�

Here, �� is the update optical parameter vector, �� is the
update data vector, and � is the regularization parameter
scaled by the maximum of the diagonal of the Hessian �JTJ�
and reduced systematically at each iteration. J is the Jacobian
matrix that relates the change in data to a change in optical
parameters. In this work, Eq. �5� is solved iteratively until the
projection error dose is reduced up to 0.2%, compared to the
previous iteration.

For a multispectral model, the image reconstruction is also
an iterative problem and a modified version of Eq. �5� is used.
However for multispectral reconstruction, the Jacobian is a
matrix consisting of a number of measurements by a number
September/October 2008 � Vol. 13�5�2
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f wavelength rows and number of FEM nodes by number of
hromophores columns.14 Therefore by dimensionality, the
pdate data vector has a length of NM by number of wave-
engths, leading to the update vector �� corresponding to the
otal number of unknowns.

It has been shown that continuous wave measurements can
esult in identical data for different sets of optical parameters
ue to crosstalk between absorption and scattering. But the
orrect wavelength selection in a multispectra model can re-
uce the effect of this uniqueness problem.13 by directly re-
onstructing for the chromophore and scattering properties.
lgorithms have been suggested that extend the image recon-

truction process by choosing sets of optimized finite wave-
engths for a continuous wave system13 to reduce the nonu-
iqueness from image reconstruction and reduce the crosstalk
etween the chromophores. A further criteria has also been
uggested that considers the error in the assumed extinction
oefficients of the chromophores and examines its role in the
ptimized wavelength set.18 However, these methods have
een limited to small and finite wavelength sets �typically five
avelengths�, restricting its use for modified systems where

arger wavelength sets may be available, and hence allowing a
etter conditioning of the inverse problem.

Since different sets of optical parameters have been shown
o give identical cw data due to crosstalk between absorption
nd scattering, the nonuniqueness concept for cw
easurements,13 proposes that by solving a matrix expression

hat considers the spectral response of the chromophores di-
ectly, the ranges of wavelengths that provide unique mea-
urement data can be found using:

R = �1 − E�ETE�−1ET1� , �6�

here R is the figure of merit or norm of the residual that
etermines the uniqueness of this matrix problem, and E is
he extinction coefficient matrix normalized by the wave-
ength given by

E = ��1��1�/�1
b

¯ �i��1�/�1
b

] � ]

�1�� j�/� j
b

¯ �i�� j�/� j
b � , �7�

here i is the number of chromophores and j is the total
umber of wavelengths considered in the image reconstruc-
ion. By the definition of Eq. �6�, if two or more sets of pa-
ameters lead to the same solution, the inverse problem has a
onunique solution and the residual R will be zero. Using this
riterion, the inverse problem therefore has a unique solution
f the residual is large. To achieve the uniqueness criteria as
iven by Eq. �6�, if these three chromophores and the scatter-
ng amplitude are allowed to vary, then it has been suggested
or cw data that at least four wavelengths must be used within

spectral model.9 For this analysis and the work presented,
he scattering power b is kept as a constant throughout the
roblem. This is because the separability of scatter power
rom other parameters is poor, and the crosstalk between chro-
ophores is high using continuous wave data alone.9

The inverse problem must also be able to distinguish be-
ween chromophores, such that each chromophore has an
qual contribution to the total measured absorption that can be
erived from expressing Eq. �2� in matrix form,
ournal of Biomedical Optics 054037-
��a��1�
]

�a��i�
� = ��1��1� ¯ �i��1�

] � ]

�1�� j� ¯ �i�� j�
��c1

]

ci
� . �8�

If the extinction coefficient matrix 	first term on right hand
side of Eq. �8�
 has similar singular values, the condition
number of the matrix is also small and each chromophore
would contribute equally to the absorption.

Assuming that only six discrete wavelengths can be mea-
sured from the entire spectral range of 650 to 930 nm, with a
separation of 4 nm �from a complete set of 71 wavelengths�,
there exists 1.4�108 combinations �C6

71� of six wavelengths
sets. Each set has a condition number and associated residual
calculated using published values of extinction and scattering
coefficients.20 In this work, three chromophores have been
assumed to vary �hemoglobin, oxyhemoglobin, and water� as
well as the scatter amplitude, while scatter power is held con-
stant and is equal to 1. A scatter plot of the calculated residual
and condition number for each of these 1.4�108 combination
six wavelength sets have been calculated and are shown in
Fig. 1. Due to the large number of points, the results shown
are limited to those sets with a residual above 0.35 and a
condition number below 400. The sets of wavelengths of in-
terest that provide the most adequate information about the
problems are those in the proximity of the top left-hand corner
�as highlighted by the shaded region in Fig. 1�, as these con-
tain the sets that have the highest residual and lowest condi-
tion number.

Figure 2 shows a histogram of the distribution of optimal
wavelength sets with high residual �	0.47� and low condition
number �
200� criteria, as taken from the region highlighted
in Fig. 1 as being those that best fulfill the criteria. The his-
togram is formed by counting the frequency where a particu-
lar wavelength appears for each of the six wavelength choices
�or bins�, normalized to the most frequently appearing wave-

Fig. 1 Scatter plot of the residual and condition number calculated for
three chromophores, hemoglobin, deoxyhemoglobin, and water. Each
point represents a different combination set of six wavelengths from
the spectra 650 to 930 nm with 4-nm separation. The region high-
lighted satisfies the criteria of uniqueness �large residual� and chro-
mophore separability �small condition number�.
September/October 2008 � Vol. 13�5�3
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ength for that specific bin. From Fig. 2, it is evident that six
ndividual wavelengths are seen as having the highest count;
owever, these wavelength peaks themselves do not form the
est optimized set, since it lies in the bottom right-hand cor-
er of the highlighted region in Fig. 1. There are four clear
pectral regions �or windows� that contribute to the high re-
idual and low condition criteria, and these are distributed
round 650, 736, 874, and 930 nm. This shows that the wave-
engths within the optimized sets that meet the residual and
ondition calculation are confined to narrow spectral win-
ows. For each optimized set, the wavelengths 650 and
30 nm are common, as there is only a single peak with a
ormalized count of unity due to the peak in the absorption by
b at 650 nm and water at 930 nm. The second, third, and

ourth common wavelengths are found in the region of
06 to 738 nm, while the fifth most common is taken from
he region 846 to 882 nm. However, it is important to note
hat increasing the number of wavelengths in a set �from six
avelengths to perhaps 10 or 12 wavelengths per set� does
ot increase the width of these bands significantly, and the
rends are similar.9

For a spectral model, a larger number of wavelengths con-
nes the inverse problem by reducing the ill-posed nature.
aking all the wavelengths within the spectra 650 to 930 nm
ith a separation of 4 nm, a residual of 2 and a condition
umber of 246 is calculated. The condition number is compa-
able to each optimized set of six wavelengths, but the re-
idual is approximately four times higher, implying that using
1 wavelengths for the inverse problem could give a better
olution. However, increasing the amount of data also in-
reases the size of the Jacobian, and thus the memory require-
ents and the computation time.
A large wavelength set can also be derived from the histo-

ram in Fig. 2. Each of the wavelengths within the histogram
ontributes to a small condition number or a large residual
ithin the optimized sets. Due to computational limits, it is
ifficult to find optimized 10, 15, or 40 wavelength sets with-

ig. 2 Histogram of optimized wavelength sets that satisfy the high
esidual and low condition number criteria for three varying chro-
ophores. Each wavelength count is normalized to the most frequent
avelength.
ournal of Biomedical Optics 054037-
out increasing the step size dramatically �to 10 or 20 nm�,
which will inevitably reduce the spectral resolution from the
absorption spectrum. Instead, by taking each wavelength that
contributes to the residual and condition criteria, as shown in
the histogram of Fig. 2, a wavelength set using windows of
the spectrum can be formed. This set, in this instance, consists
of 21 wavelengths, but importantly is only 28% of the size of
the original full spectrum considered. The condition number is
comparable to each of the other wavelength sets, as shown by
Table 1.

3 Methods and Results
To compare the effects of wavelength selection, simulations
were performed using a simulated tissue region. Using a
known and defined numerical model has the benefit that the
target locations and values are known exactly, allowing accu-
rate analysis of the reconstructed images, and also allowing
the effects of the wavelength selection to be investigated ex-
actly. The simulated 2-D region consisted of a uniform circu-
lar mesh of radius 43 mm with 1785 nodes corresponding to
3418 linear triangular elements. 16 optical fibers placed equi-
distant from the center of the mesh were used for the data
collection of amplitude with a modulation frequency of
100 MHz. Random noise of either 1, 5, or 10% is then added
systematically to the cw intensity-only data. The background
had scattering amplitude equal to 1 mm−1, water content of
40%, deoxygenated hemoglobin concentration of 0.01 mM,
and oxygenated hemoglobin concentration of 0.01 mM. Four
circular anomalies of radius 7.5 mm are placed within the
model in separate individual locations within the mesh, as
shown in Fig. 3 �left-hand column�. Within each anomaly,
only one parameter was changed, corresponding to either
scattering amplitude of 0.5 mm−1, water content of 80%,
deoxygenated hemoglobin concentration of 0.02 mM, or oxy-
genated hemoglobin concentration of 0.02 mM. The scatter
power was set as a constant throughout the entire phantom at
1.0. To reduce the number of unknown parameters, a region
mapping algorithm was used to transform the Jacobian from a
nodal basis to a region basis.21 In this case, by using. “hard a
priori” and reconstructing the values only for the regions, the
differences in the reconstructed images will be due to the
different selection of wavelengths alone and not due to the
inverse problem. A transformation matrix k that has dimen-
sions of a number of unknowns �number of FEM nodes times
number of chromophores� by a number of regions by a num-
ber of chromophores is applied to the Jacobian such that,

Table 1 Residual, average residual �for the number of wavelength
used�, and condition number for corresponding wavelength sets.

Wavelength
selection

Condition
number Residual

Average
residual

Full spectrum 246 2.0 0.028

Windows method 195 1.1 0.044

Six wavelengths 200 0.47 0.078
September/October 2008 � Vol. 13�5�4
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J̃ = Jk . �9�

his transformation sums all parameters of a given chro-
ophore in a given region together. The equation to be solved

s then

�� = k�J̃TJ̃ + �I�−1J̃T�� , �10�

here premultiplying the update equation with k transforms

he update vector back into a nodal basis. The Hessian J̃TJ̃
as then much smaller �number of regions by number of re-

onstructed chromophores� which in this case is 20 �five re-
ions and four chromophores�.

The reconstructions were carried out using three different
avelength sets: 1. the full spectrum consisting of the range
50 to 930 nm with 4-nm separation; 2. the windows method
onsisting of the wavelength ranges 650 nm, 706 to 738 nm,
46 to 882 nm, and 930 nm at 4 nm separation; and 3. a set
f six wavelengths determined by a current realistic system
sing laser diodes at 660, 734, 760, 808, 826, and 850 nm,
hich is clearly not an optimized set as described before, but

imited by the typical availability of specific laser diodes.14

Figure 3 �columns 2, 3, and 4� shows the reconstructed
mages to demonstrate the crosstalk for each of the three
avelength methods for 5% added noise. Similar results are

ound for the crosstalk between chromophores for 1 and 10%
oise �not shown�. The corresponding reconstructed and tar-
et values for each image are shown in Table 2. Reconstruc-
ions were also carried out using different background values
uch as high oxyhemoglobin with a low target value. The
esults in these cases were similar to those presented here, and
re not shown.

To test the robustness of the windows method, standard
mage reconstructions using a spectrally modified version of
q. �5� have been carried out on the same simulated phantom
s defined before, since in most real situations the exact loca-

ig. 3 Region-based spectral reconstruction of scattering amplitude, w
elections; the full spectrum �650 to 930 nm�, denoted by every 4 nm
avelengths derived from a typical measurement system. The cw dat
ournal of Biomedical Optics 054037-
tions of regions are not known. Reconstructions for 1, 5, and
10% added noise are shown in Figs. 4–6 respectively.

To test the feasibility of the windows method for wave-
length selection for an experimental system, data have been
used in reconstruction of a simple gelatine-based phantom.
The cylindrical tissue simulation was designed with radius
43 mm and length 88 mm. A cylindrical anomaly of radius
12.5 mm is placed 25 mm from the center. The background
hemoglobin concentration is 0.011 mM, while the anomaly
has hemoglobin concentration of 0.027 mM. Wavelengths be-
tween 690 and 840 nm with 5-nm separation, excluding
760 nm, were collected, giving a total of 29 wavelengths us-
ing a frequency domain system incorporated with a mode-
locked Ti:sapphire laser for the source between 690- and
850-nm wavelengths, described elsewhere.22

Using the same method as previously defined with the new
wavelength range, windows of wavelengths of 695 nm,
715 to 735 nm, 755 nm, 765 to 770 nm, and 800 to 810 nm
can be calculated as the wavelength set �12 wavelengths in
total�. The residual per wavelength increases from 0.0065 us-
ing the whole spectrum to 0.0122 for the windows method,
while the condition number for the windows method is 654
compared to 630 using the entire available spectrum. The in-
verse problem is carried out on the same circular mesh as
before, after appropriate data calibration,1 and Fig. 7 shows
the reconstructed images with the full spectrum
�695 to 840 nm�, denoted by 29 wavelengths, the windows
method, and a selection of five wavelengths from across the
spectrum �700, 750, 800, 830, and 840 nm�.

4 Discussions
Using a numerical model and region-based image reconstruc-
tion, the use of windows-based wavelength optimization was
investigated to allow a direct analysis of results without image
inaccuracy due to the inverse problem. Region-based images

oxyhemoglobin, and oxyhemoglobin using three different wavelength
ows of wavelengths sampled from the full spectrum, and a set of six
% added noise.
ater, de
, wind

a has 5
September/October 2008 � Vol. 13�5�5
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ere reconstructed using either the complete spectrum at
-nm separation, a set of windows-based optimized wave-

engths, or six defined wavelengths, as commonly available in
ost experimental systems, Fig. 3, and Table 2. For each
ethod the target values were observed, and additionally, to

llow a more quantitative analysis, error was also calculated
y

error = 100 � �1 − �c/�t� , �11�

here �c is the calculated parameter and �t is the target value
or each region of interest, summarized by Table 3. Using

ig. 4 Spectral image reconstruction of scattering amplitude, water, d
dded noise for the three wavelength selections; the full spectrum, th

Table 2 Reconstructed anomaly values for the fo
different wavelength selections with 1, 5, and 10
trum with a 4-nm separation �denoted by 71 wa
lengths�, and a selection of six wavelengths.

Noise level
Number of

wavelengths SA �mm−

Target value 0.500

1% 6 0.502

21 0.499

71 0.499

5% 6 0.500

21 0.507

71 0.502

10% 6 0.472

21 0.496

71 0.505
ournal of Biomedical Optics 054037-
region-based reconstruction, for both the windows method
and the full spectrum the target values were found with an
error less than 1.4%, with 5% added noise, whereas using six
wavelengths the largest error was found with a maximum of
4.8%. However, the crosstalk between chromophores varied
depending on the wavelength selection. Using both the win-
dows method and the full spectrum gave the lowest crosstalk
between each of the regions with the largest percentage error
in the reconstruction of the background HbO2 of 0.7 and
1.5%, respectively. However, using six wavelengths gave the
largest crosstalk with the reconstructed background H2O of

emoglobin and oxyhemoglobin using a simulated phantom with 1%
ows sampled from the full spectrum, and a set of six wavelengths.

ns of interest from a simple phantom using three
ed noise. Reconstructions using the whole spec-
hs�, the windows method �denoted by 21 wave-

HbO2 �mM� Hb �mM� H2O �%�

0.0200 0.0200 80

0.0202 0.0200 80.4

0.0199 0.0200 80.0

0.0200 0.0196 79.9

0.0210 0.0196 81.4

0.0202 0.0200 80.1

0.0200 0.0200 79.8

0.0198 0.0197 75.1

0.0186 0.0196 76.7

0.0192 0.0200 78.7
eoxyh
e wind
ur regio
% add
velengt

1�
September/October 2008 � Vol. 13�5�6
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%. The windows method has a much lower crosstalk at high
oise in comparison to using just six wavelengths, and re-
ains similar to the results of taking the full spectrum. As the

oise increases, the qualitative accuracy attained by the recon-
truction decreases for each wavelength set. However, even at
0% noise, the error in the target values for each chromophore
s small for each selection of wavelengths, with a maximum
rror found for the reconstruction of the H2O anomaly with
ix wavelengths of 6.1% and the HbO2 anomaly with the
indows method and the full spectrum of 6.8 and 3.9%, re-

pectively. Importantly, the reconstructed values using the
indows method are very similar to the reconstructed values

ound using the entire spectrum, and the crosstalk is much
maller than using the selection of six wavelengths, in Table
. Similar results were found when reconstructing for do-
ains with different background values �not shown�. The
ethod of selecting the optimum wavelength windows of the

Fig. 6 Same as Fig. 4,

Fig. 5 Same as Fig. 4
ournal of Biomedical Optics 054037-
spectrum is entirely dependent on the number of chro-
mophores considered, and thus the extinction coefficients of
the available wavelengths. The optimum wavelengths are se-
lected independent of the imaging volume, but since the prob-
lems of uniqueness and condition of the inverse problem have
been considered objectively, the method is flexible to cope
with a wide range of target and background values.

To evaluate the use of optimized wavelengths in a true
tomographic setting, the data as used in the previous case
were used to reconstruct spatially varying chromophore con-
centrations throughout the model �Figs. 4–6 and Table 3�.
With 5% added noise �Fig. 5�, using the full spectrum gives
errors in the reconstructed anomalies of between 20% �H2O�
and 33% �HbO2�. With the windows method the error ranges
from 18% �H2O� to 30% �HbO2�. With six wavelengths, the
range in error increases to between 24% �scattering ampli-

ith 10% added noise.

ith 5% added noise.
but w
, but w
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ude� and 35% �HbO2�. The crosstalk also varied between
ethods. In each case the largest error was found in the back-

round of the scattering amplitude at 7.1% using the full spec-
rum, 6.8% using the windows method, and 9.8% using six
avelengths. Using just six wavelengths was shown to be
oth quantitatively and qualitatively less accurate for all noise
evels modeled, although there could be two reasons for this.
irst, the six wavelengths are based on a frequency modulated
ystem currently in use for the collection of clinical data due
o availability of laser diodes, and the selection is therefore
ot optimized. Second, the number of wavelengths is far
ewer and the amount of information available is therefore
imited. However, there are also computational benefits for
hoosing a smaller wavelength set than the full spectral range.
he size of the Hessian matrix �JTJ� depends on the number
f wavelengths chosen and has a computational limit depen-

able 3 Calculated error �%� for the anomalous region �A� and back
avelength selections with 5% added noise. A similar trend is seen a
-nm separation �denoted by 71 wavelengths�, the windows method

Reconstruction
method

Noise
level

Number of
wavelengths

SA

A

Region-based
reconstruction

5% 6 0.1

21 1.4

71 0.4

Standard
reconstruction

5% 6 23.5

21 20.7

71 20.6

ig. 7 Experimental phantom images reconstructed with three differen
ude, total hemoglobin, oxygen saturation, and water.
ournal of Biomedical Optics 054037-
dent on the system. The size of the Hessian also has a direct
impact on the computation time of the inverse problem. If the
Hessian is of the size N�N, the number of calculations is a
function of N3 and the memory of N2.23 The simulated phan-
tom uses 16 sources and 15 detectors to model the data, which
gives 240 measurements at each wavelength. Using the full
spectrum �71 wavelengths� requires 2.3 Gb to store the Hes-
sian matrix, whereas the windows method �21 wavelengths�
requires only 203 Mb. The windows method is computation-
ally more efficient than that of the full spectrum and more
desirable due to the reduction in computation time.

To validate the results, a set of experimentally measured
data from a gelatine-based phantom was used and images
were reconstructed �Fig. 7�. The reconstructed images using
five wavelengths show an overestimate in the total amount of

�BG� using two different reconstruction methods and three different
10% added noise. Reconstructions using the whole spectrum with a

ed by 21 wavelengths�, and a selection of six wavelengths.

HbO2 Hb H2O

A BG A BG A BG

4.8 3.1 1.9 0.5 1.8 7.0

0.9 1.5 0.2 0.7 0.7 1.4

0.1 0.7 0.1 0.1 0.3 0.6

35.4 7.2 25.7 9.2 32.1 4.9

30.0 6.2 23.5 5.3 18.4 4.8

33.5 6.1 22.6 6.1 19.8 4.1

length selections using cw data and reconstructing for scatter ampli-
ground
t 1 and
�denot

BG

1.1

0.3

0.0

9.8

6.8

7.1
t wave
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b by 30%, while the number of artifacts is also high for
O2, H2O, and scattering amplitude. This shows that a lack of

nformation or nonoptimized wavelength sets do not give ac-
urate results. The reconstructed images using the full spec-
rum have reconstructed the total Hb qualitatively well, while
rtifacts can be seen in the scattering amplitude. This could be
ecause using the full spectrum in this case overconstrains the
roblem. The windows method reconstructed the peak in the
b as well as reduced artifacts in the other images. Impor-

antly, the windows method required 52 sec per iteration,
hile the full spectrum took 114 sec. Thus the window
ethod is computationally more efficient.

Conclusions
he use of large wavelength sets in NIR imaging can help
ptimize the inverse problem and is especially useful for sys-
ems where the magnitude of measurement noise is large.
owever, a large number of wavelengths also increases the

ize of the computational problem and thus the memory re-
uirement, which becomes more important for large compli-
ated models. Using an optimized set of a small number of
avelengths is computationally more efficient, and theoreti-

ally can provide unique images using continuous wave mea-
urements. An objective method to allow the determination of
set of optimized wavelengths, which is a function of the

hromophores being imaged, was presented. Using the criteria
hat maximizes this residual, while maintaining a low condi-
ion for the inverse problem, the number of wavelengths
eeded to provide adequate information for full spectral im-
ging can be reduced. Reconstructed images, based on either
egional image reconstruction or those with tomographic im-
ges, show that by adequate optimization, the total number of
equired wavelengths can be reduced by more than 50%,
ithout loss to image quality or accuracy, but with the added

dvantage of reducing both data collection and image recon-
truction time. More importantly, using this optimized set of
avelengths, the total error within the reconstructed images,

ncluding the crosstalk between parameters, is reduced, as
ompared to the case where the entire spectrum is used. This
onclusion is very important, suggesting that not all wave-
engths within the NIR range are beneficial for spectral to-

ography. Future work will include the use of path-length
nformation to allow the inclusion of scatter power within the
avelength optimization method, which will allow recon-

tructed images not only of absorption-based chromophores,
ut also scatter-dependent changes.
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