
E
s

K
M
S
6
T
C

S
P
O
D
6
T
C

J
M
S
6
T
C

U
D
1
T
C

L
P
O
D

U
D
6
T
C

1

E
a
a
d
p
c
l
c
e
a
o
a

A
O
R
4

Journal of Biomedical Optics 13�6�, 064030 �November/December 2008�

J

stimation of mammographic density on an interval
cale by transillumination breast spectroscopy

ristina M. Blackmore
ount Sinai Hospital

amuel Lunenfeld Research Institute
0 Murray Street
oronto, Ontario M5T 3L9
anada

amantha Dick
rincess Margaret Hospital, UHN
ntario Cancer Institute
ivision Biophysics and Bioimaging
10 University Avenue, Rm. 8-303
oronto, Ontario M5G 2M9
anada

ulia Knight
ount Sinai Hospital

amuel Lunenfeld Research Institute
0 Murray Street
oronto, Ontario M5T 3L9
anada

and
niversity of Toronto
alla Lana School of Public Health
55 College Street
oronto, Ontario M5T 3M7
anada

othar Lilge
rincess Margaret Hospital, UHN
ntario Cancer Institute
ivision Biophysics and Bioimaging

and
niversity of Toronto
epartment of Medical Biophysics
10 University Avenue
oronto, Ontario M5G 2M9
anada

Abstract. Transillumination breast spectroscopy �TiBS� uses nonioniz-
ing optical radiation to gain information about breast tissue morpho-
logical and structural properties. TiBS spectra are obtained from 232
women and compared to mammographic density �MD� quantified us-
ing Cumulus. The ability of TiBS to estimate MD is assessed using
partial least-squares �PLS� regression methods, which requires TiBS
spectra as input �X� and Cumulus MD as target �Y� data. Multiple PLS
models are considered to determine the optimal processing tech-
nique�s� for the input �X� and target �Y� data. For each model, the
association between TiBS estimated MD �Ŷ� and Cumulus MD �Y� is
established using Spearman’s rank correlation and linear regression
analysis. The model that best estimates MD has the fewest assump-
tions regarding target �Y� and spectral �X� processing. The Spearman’s
correlation coefficient between predicted MD and Cumulus MD for
this model is 0.88, with a regression slope ��� of 0.93 �95% CI 0.83–
1.02� and an R2 of 0.78. The approximation of individual MD was
within 10% of Cumulus MD for the majority of women �80%�, with-
out stratification on age, body mass index �BMI�, and menopausal
status. TiBS provides an alternative to mammography assessed
MD enabling frequent and earlier use of MD as a risk marker in pre-
ventive oncology. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

merging research into certain disease risk factors has lead to
n increase in risk awareness among the medical community
nd general population.1–3 Consequently, there is a growing
esire to use risk factors to monitor and maintain health and
ossibly delay or prevent future disease. Current examples of
ommonly monitored risk factors include blood pressure, cho-
esterol, weight or body mass index �BMI� and prostate spe-
ific antigen �PSA�, to name but a few.4–7 However, to be
ffective in monitoring health, these risk factors should be
ttainable noninvasively, or through sampling of body fluids
nly, and they should also be measurable at a frequency en-
bling a quantitative assessment of change due to environ-

ddress all correspondence to: Lothar Lilge, Department of Medical Biophysics,
ntario Cancer Institute, Princess Margaret Hospital, 610 University Avenue,
m. 7-416, Toronto, ON, Canada M5G 2M9. Tel: 416-946-4501 x5743; Fax:
16-946-6529; E-mail: llilge@uhnres.utoronto.ca
ournal of Biomedical Optics 064030-
mental impact, preventive interventions, and/or aging.
In the field of preventive oncology, there is a shift toward

the development of quantitative models for risk assessment.8

With respect to breast cancer, numerous studies have demon-
strated that mammographic density �MD�, obtained from stan-
dard x-ray mammography, is a strong independent risk factor
for the disease.9–19 As a result, MD is often used in epidemio-
logical and pharmaceutical studies as a surrogate marker for
breast cancer risk when measurements are executed on an
interval scale, using threshold modeling or similar means of
quantification.12,20,21 However, with the exception of clinical
trials, MD is generally not reported on an interval scale to the
physician and/or to the patient as such an analysis would re-
quire a trained individual to extract this information from ana-
logue or digital mammograms. Instead, radiologists com-
monly only classify MD as low, medium, or high, rendering it

1083-3668/2008/13�6�/064030/8/$25.00 © 2008 SPIE
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nsufficient for breast health/risk monitoring. Furthermore, be-
ause mammography involves exposure to ionizing radiation,
nd its sensitivity in premenopausal women is reduced, it is
ot appropriate for young women or women at increased risk
i.e., mutation carriers� and not for repeated assessments, as
ould be required, for example, in chemoprevention trials.

Transillumination breast spectroscopy �TiBS� is a nonim-
ging, noninvasive optical technique that provides informa-
ion about bulk breast tissue properties �light scattering, water,
ipid, and hemoglobin content� based on the spectral depen-
ence of a photon’s probability to pass through this tissue.22–27

ecently, we demonstrated the ability of TiBS to differentiate
omen with �75% MD from those with �75% MD with an

ssociated area under the curve �AUC� of 0.92 using receiver
perator curve �ROC� analysis, indicating good sensitivity
nd specificity of this technique in assessing MD on a cat-
gorical scale.28 In this analysis, we evaluated the ability of
iBS to predict MD on an interval scale, as required for quan-

ification of change, for example, in chemoprevention trials,
mong 232 pre- and postmenopausal women. MD was ob-
ained from analogue mammograms using a computer-
ssisted threshold program12 �i.e., Cumulus� and subsequently
sed as the target data �Y� in the training of a partial least-
quares �PLS� regression based model,29 with the TiBS spec-
ra acting as the input data �X�.

Materials and Methods
.1 Study Population
tudy participants were recruited between March 1, 2000, and
eptember 30, 2004, from the Marvelle Koffler Breast Imag-

ng Centre at Mount Sinai Hospital in Toronto. This study was
pproved by the Research Ethics Boards of the University of
oronto, Mount Sinai Hospital, and the University Health
etwork. Inclusion criteria were an analogue standard screen-

ng mammogram within approximately 12 months prior to
ecruitment, but not exhibiting any radiological suspicious le-
ions �N=232�. Exclusion criteria included prior fine-needle
spiration, core biopsies, or any other type of breast surgery
ncluding breast reduction or augmentation and any type of
attoos on the breast�s�. Additionally, women showing left and
ight asymmetry in MD, based on classification of mammo-
rams by an expert radiologist ��25% difference�, were ex-
luded, thus limiting participants to women whose breast tis-
ue retained symmetric tissue aging.

Information concerning participants’ age, menopausal sta-
us, height, and weight were collected by means of a self-
dministered questionnaire. Postmenopausal status was de-
ned as having had no menstrual period for at least
2 months. Height and weight were used to calculate BMI
efined as weight in kilograms divided by the square of the
eight in meters.

.2 Quantification of MD from Mammograms
ammographic breast tissue density �MD� was used as the

old standard to evaluate the potential for TiBS to estimate
reast cancer risk. All film mammograms in cranial-caudal
iew �2 films�232 volunteers, N=464� were digitized using
Lumisys Digital Scanner �Kodak, Rochester, New York,
SA� at 12-bit resolution and a pixel pitch of 260 �m. Digi-
ournal of Biomedical Optics 064030-
tized mammograms were examined using Cumulus,12 an in-
teractive density-threshold software. For each image, the
trained reader interactively selects two pixel level values us-
ing a special outlining tool. The first level selected �iEDGE�
separates the outer edge of the breast from the image back-
ground. The second level �iDY� defines the edges of x-ray
dense tissue regions, where all pixels within the outlined re-
gion of interest are considered to represent mammographic
densities. Additionally, the program enables the user to outline
the pectoral muscle thus excluding contributions of the x-ray
dense muscle from MD. Pixels between the delineated pecto-
ral muscle and the edge threshold �iEDGE� represent total
breast area, while those above the density threshold �iDY�
represent dense tissue areas. The percent dense area �MD� is
defined by the ratio of dense area�s� to the total breast area,
multiplied by 100.

MD measurements on all mammograms were performed
by two individual raters �KMB, LL� after being trained in the
use of Cumulus by an expert rater �NB�. Mammograms were
presented in a randomized order over eight different sessions
�N=58 mammograms per session�. To assess the reliability of
MD measurements, a randomly selected subset of mammo-
grams �15%� were interspersed throughout the eight sessions
�N=72 or nine films per session�. For the trained raters, the
reading of MD was repeated three times �reads 1 to 3� for the
entire data set with a period of at least 1 month separating
each read. The expert rater only read the mammograms once,
including repeats. Table 1 displays the breakdown of study
volunteers, as well as MD, demographic, reproductive, and
anthropometric information.

2.3 Optical Setup and Procedure
The instrumentation used to gather transillumination spectra
was previously described in detail.30 A 50-W halogen lamp
served as broadband light source. UV, part of the visible spec-
trum, and mid-IR radiation were eliminated using a cut-on
and a heat rejection filter, respectively. A total power of
0.25 W, covering the 550 to 1300-nm bandwidth, was deliv-
ered to the skin via a 5-mm light guide. Transmitted light was
collected via a 7-mm-diam optical fiber bundle �140 Si /Si
fibers, 200 �m core diameter, numerical aperture: 0.36, P & P
Optica, Kitchener, Canada�, pointed coaxialles toward the
light source. The interoptode distance was provided by a cali-
per holding the optodes. The source fiber was placed against
the skin on the top surface of the breast with minimal com-
pression. Wavelength-resolved detection was achieved using a
spectrophotometer �Kaiser Optical Systems, Inc., Ann Arbor,
MI, USA� with holographic transillumination grating
�15.7 rules /mm blazed at 850 nm� and a CCD �Photometrics,
Tucson, AZ, USA� with a spectral resolution of better than
3 nm from 625 to 1060 nm �N=436 wavelengths�. These
wavelengths were selected as they include the absorption
spectra of the primary tissue chromophores, namely, hemo-
globin �deoxy- and oxy-�, water, and lipid. Health Canada
Investigational New Device Class II approval was obtained.

All measurements were taken in the dark, with the partici-
pant seated comfortably in an upright position and the breast
resting on the support platform containing the attached cali-
per. A total of eight measurements in cranial-caudal projection
were taken per individual, four per breast �center: midline
November/December 2008 � Vol. 13�6�2
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lose to the pectoral muscle; medial: 2 cm from the inner
dge; distal: 2 cm behind the nipple; lateral: 2 cm from the
uter edge�. With the measurement of four positions on each
reast, an ovoid shaped volume of approximately 23 cm3 for
5-cm-thick breast is sampled.30,31 Numerical modeling dem-
nstrated that 70% of the total breast tissue contributed to
8% of the optical signal. Temporal and spatial reproducibil-
ty of the optical measurements is good, as previously
ddressed.30,31 The entire TiBS procedure takes approximately
5 min.

.4 Preparation of Spectra for Data Analysis
ll spectra were corrected for variations in the wavelength-
ependent signal transfer function of the optical system and
he thickness of the interrogated tissue, such that all spectra
sed in further data processing are independent of the instru-
ent and interoptode distance resulting in units of optical

ensity per centimeter �OD cm−1� for the spectra. For correc-
ion of the signal transfer function, spectra were referenced to

1-cm-thick ultra-high-density polyurethane transmission
tandard �Gigahertz Optics, Munich, Germany�. Its optical
roperties �OD �1.8 to 2.3 over the wavelength range of
nterest� were measured separately using an integrating sphere
iffuse reflectance setup.30

.5 PLS Analysis
rior to PLS analysis, the error in MD measurements for each
ater and between raters �intra- and interrater error, respec-
ively� was determined as this can directly affect the quality of
LS algorithm training and hence the strength of the attain-
ble correlation between TiBS spectra and MD �see the fol-
owing�. Intraclass correlation coefficients �ICCs� were calcu-
ated to assess intrarater repeatability for each read �1 to 3� for
he two trained raters �KMB and LL� and for the expert rater
NB, one read only�. To assess interrater error, two methods
ere used. First, the mean absolute MD difference between

ach trained rater and that of the expert was calculated for
ach mammogram and each read using a mixed linear model

Table 1 MD, demographic, reproductive, and a
logue mammograms.

Total participants 232

Total mammograms 464

Prem
�N

MD �%� mean �sd� 35

Age �years� mean �sd� 45

BMI �kg m−2� mean �sd�c 26
aPremenopausal women had their last menstrual perio
ments.
bPostmenopausal women had their last menstrual perio
ments.
cPremenopausal N=106; postmenopausal N=121.
ournal of Biomedical Optics 064030-
�PROC MIXED in SAS 9.1�. Second, an interclass correlation
coefficient was calculated between each trained rater and the
expert rater for each read.

Training of the PLS algorithm was executed on a subset of
randomly selected spectra �NT=348 or 75%� and the predic-
tive power of the algorithm tested by including the remaining
25% of spectra in a validation data set �NV=116�. The PLS
function in MATLAB29 extracts a common spectrum, called a
b vector �% cm OD−1�, from the entire training spectral data
set that when multiplied as a cross-product with an individu-
al’s spectrum �Xi� �OD cm−1� produces a scalar or the target,
MD �Yi� where Yi=Xib. The b vector identifies those wave-
lengths, and indirectly also morphological and structural
traits, that contribute positively, negatively, or not appreciably
to MD �Yi�. The 75 versus 25% ratio for training and valida-
tion ensures that the training set covers a sufficient range of
the variation within the population without over training the
system, thereby permitting the PLS algorithm to retain valid-
ity on the validation set.29 Because the PLS algorithm uses
absolute intensities, spectra were not mean centered as in our
previous analysis.28

Since only MD of the entire breast �global assessment� is
an established marker for breast cancer risk,9–19 the four spa-
tially collected spectra per breast were considered as a single
vector �Xi� for PLS training with the corresponding Cumulus
MD as the target �Yi�. Therefore, spectra from all quadrants
on each breast �center, medial, distal, lateral� were appended
to create a single spectrum to approximate global information
�Fig. 1�. Hence, for each individual two spectra with corre-
sponding MD �left and right breasts were treated as separate
events� were used as the input �Xi� and target �Yi� variables,
respectively.

We considered multiple PLS models �Table 2� to determine
which spectral processing technique on the input data �Xi�
and/or the target data �Yi� best predicts individual global MD

�Ŷi�. For the target variable �Yi�, we examined a model that
included only Cumulus MD of the expert rater �NB�, as well
as models that used the average Cumulus MD of all three
raters, to approximate the “gold standard” or best available

ometric information of all participants with ana-

sala

�
Postmenopausalb

�N=123�
All Women
�N=232�

7� 23.1 �18.6� 28.9 �20.1�

� 55.4 �6.3� 50.9 �7.1�

� 26.7 �5.1� 26.6 �5.7�

an 1 month before mammography and TiBS measure-

st 12 months before mammography and TiBS measure-
nthrop

enopau
=109

.5 �19.

.9 �4.1

.3 �6.4
d less th

d at lea
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read �see the following results�. We also considered models
that excluded mammograms �and associate appended spectra�
with greater than 10% absolute disagreement in Cumulus MD
�n=32� between any two raters and models where the Cumu-
lus MD of each rater was not averaged and hence each ap-
pended spectrum was used up to three times in the training of
our PLS algorithm. In some models, detection shot or CCD
readout noise seen in the TiBS spectra �Xi� was reduced using
either one of two MATLAB defined functions: Boxcar �win-
dow ��=7 nm� or Savitsky-Golay �Savgol� smoothing and
differentiation with a filter width ��=9 nm or a third-order
polynomial.29

Spectral processing and PLS algorithm training was ex-
ecuted in MATLAB version 12.0 and statistical analyses were
conducted using SAS version 9.1. For each PLS model, the

association between the PLS predicted MD �Ŷi� and the tar-
get, Cumulus MD �Yi�, was established using Spearman’s
rank correlation and linear regression analysis �where Cumu-

lus MD �Yi�=independent variable �x� and PLS MD �Ŷi�
=dependent variable �y�� for both the training and validation
data sets. For each model, we also examined the residuals

�i.e., Cumulus MD �Yi� minus PLS predicted MD �Ŷi�� plot-

t variable �x� and PLS predicted MD �Ŷi�=dependent variable �y�� and
ing and validation data sets.

Intercept 95% CI � 95% CI R2
Spearman’s

rho

0.90 −1.70 3.50 0.98 0.90 1.06 0.64 0.80

1.09 −3.55 5.73 0.98 0.84 1.12 0.62 0.80

0.50 −1.27 2.28 0.99 0.94 1.04 0.80 0.90

1.15 −2.09 4.39 0.93 0.83 1.02 0.78 0.88

0.35 −1.12 1.82 0.99 0.95 1.04 0.86 0.94

1.21 −2.11 4.53 0.93 0.83 1.02 0.77 0.88

0.40 −1.21 2.02 0.99 0.94 1.04 0.83 0.92

1.87 −1.26 4.99 0.90 0.81 0.99 0.78 0.89

0.40 −1.22 2.01 0.99 0.94 1.04 0.84 0.92

1.77 −1.30 4.84 0.92 0.83 1.00 0.80 0.90

0.38 −1.22 1.99 0.99 0.94 1.04 0.84 0.92

1.73 −1.48 4.95 0.92 0.82 1.01 0.78 0.88

0.17 −0.79 1.12 1.00 0.97 1.02 0.89 0.95

0.10 −0.79 0.99 1.00 0.97 1.02 0.92 0.96

8.38 4.65 12.11 0.67 0.57 0.77 0.61 0.79

0.27 −1.20 1.75 0.99 0.95 1.04 0.84 0.92

2.96 −0.26 6.17 0.88 0.79 0.97 0.74 0.84
able 2 Results of linear regression analysis �Cumulus MD �Yi�=independen
pearman’s rho correlation coefficients for different PLS models for the train

MD �Yi�
Spectra �Xi�,

Shot-Noise Minimized N Data Setodel Averaged Excluded

Exert only 348 Training

116 Validation

X 348 Training

116 Validation

X X 319 Training

113 Validation

X X �Savgol/Boxcar� 348 Training

116 Validation

X X X �Boxcar� 319 Training

113 Validation

X X X �Savgol� 319 Trainig

113 Validation

1044 Training

X 957 Training

339 Validation

X X �Savgol/Boxcar� 957 Training

339 Validation
C M D L

0 200 400 600 800 1000 1200 1400 1600 1800
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Wave Number

OD cm-1

ig. 1 Example of an appended spectrum from a participant where
umulus MD �Yi�=1.6%. Order of spectra is center �C�, medial �M�,
istal �D�, lateral �L�. Each spectrum is measured in OD cm−1 over
36 wavelengths �625 to 1060 nm�.
November/December 2008 � Vol. 13�6�4
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ed against Cumulus MD �Yi�. For statistical testing, p values
0.05 were considered significant.

Results
.1 Intra- and Interrater Error in Cumulus MD �Yi�
he intrarater ICC for the expert �NB� was 0.97. For each

rained rater �KMB and LL�, the intrarater ICC improved with
ach read and was highest for the third read �0.96 and 0.93,
espectively�. The mean absolute difference in Cumulus MD
or all mammograms between each rater and the expert also
ecreased with each read �i.e., from read 1 to read 3�. The
ean absolute difference between rater 1 and the expert and

ater 2 and the expert for the third read was 6.0% �95% CI:
.4%–6.4%� and 5.4% �95% CI: 4.9%–6.4%�, respectively,
nd both were significantly different from zero �p�0.0001�.
he corresponding interrater ICC for rater 1 was 0.92, while

or rater 2 it was 0.93.

.2 PLS Predicted MD �Ŷi�
ecause the third read showed the highest intra- and interrater

CC and the smallest absolute difference in Cumulus MD be-
ween each trained rater and the expert, the target �Yi� used in
ll PLS modeling was MD from Cumulus read 3 for the
rained raters.

Table 2 displays the results of linear regression analysis
nd Spearman’s rank correlation coefficients for the associa-
ion between Cumulus MD �Yi� �the independent variable, x�
nd PLS predicted MD �Ŷi� �the dependent variable, y� for
oth the training and validation data sets.

Training the PLS algorithm using Cumulus MD of the ex-
ert rater only �model 1� or Cumulus MD of all three raters
not averaged� �models 7 to 9� as the target �Yi�, yielded the
owest R2 values �0.61 to 0.74� and Spearman’s rank correla-
ion coefficients �rho: 0.80 to 0.84� for the validation data set.
urthermore, for models 7 to 9 the slope of the regression line
�� in the validation set was significantly less than 1.0, sug-
esting a bias in model development. Averaging Cumulus MD
f all three raters �model 2� improved both the R2 value and
pearman’s rho correlation coefficient of the validation set
i.e., versus models 1, 7 to 9� and the 95% CI of the regres-
ion slope included 1.0. Conversely, excluding mammograms
and associated spectra� that displayed greater than 10% dis-
greement between any two raters �model 3� or reducing de-
ection or CCD readout shot noise using either the Boxcar or
avgol MATLAB functions �models 4 to 6� only improved

he results for the training data set, not the prediction of MD

Ŷi� �i.e., versus model 2�. Because model 2 had the least
ssumptions regarding spectral and target processing and be-
ause it demonstrated both a large R2 and Spearman’s corre-
ation coefficient in the validation data set, it was considered
he most parsimonious model. The PLS b vector associated
ith this model is shown in Fig. 2. Figure 3�a� is a scatter plot

f PLS predicted MD �Ŷi� versus Cumulus MD �Yi� �model 2,
alidation set only� and Fig. 3�b� is a plot of the residuals �i.e.,

umulus MD �Yi� minus PLS predicted MD �Ŷi�� versus Cu-
ulus MD �Yi�. Overall, for the majority of women �80%� the

stimation of individual MD �Ŷi� was within 10% of Cumulus
D �Y �, although for the entire data set it ranged between
i

ournal of Biomedical Optics 064030-
−26 and +22% �Fig. 3�b��. The slope of the residuals �Yi

− Ŷi� for model 2 was �=0.16% �95% CI: 0.08% to 0.24%�,
significantly larger than zero �p�0.0001�, suggesting that as
Cumulus MD �Yi� increases so does the error associated with

the prediction of MD �Yi− Ŷi� �Fig. 3�b��.

4 Discussion
The performance of the PLS algorithm is given by the actual
strength of the correlation between the target �Yi, Cumulus
MD� and the input �Xi, TiBS spectra� on which it is trained, as
well as the accuracy of the target data and the quality of the
spectral data. To assess the influence of target accuracy and

spectral quality on PLS prediction of MD �Ŷi� various models
were evaluated. Among these models, we considered model 2
to be the “best” model because it had the fewest assumptions
regarding spectral �Xi� and target �Yi� processing, the R2 and
Spearman rho values for the validation set were among the
highest �0.78 and 0.88, respectively�, and the results for the
training and validation data sets were comparable, suggesting
no over- or undertraining of the PLS algorithm.

Although we used MD from the final Cumulus read as the
target in PLS training, as it demonstrated the highest intra-
�0.93 to 0.97� and interrater ICC �0.92 and 0.93� of all three
reads, it was not exact. In addition, the absolute difference in
Cumulus MD between each trained rater and the expert rater
ranged between 5 and 6%, which was significantly different
from zero. Employing MD of the expert rater only as the
target �model 1� resulted in a less favorable PLS algorithm;
both the R2 values and correlation coefficients for the training
data set were small and the prediction of MD in the validation
set limited. Conversely, models that employed the average
MD of all three raters as the target �models 2 to 6� demon-
strated improved results for both the training and validation
sets. Hence, there is a potential for bias to be introduced in the
estimation of MD when MD from only one or different raters
is used as the target in PLS training. Although, the expert rater
�NB� has demonstrated a high odds ratio �OR� between MD
derived by himself and breast cancer incidence,12 it is possible
that the trained raters �KMB, LL� utilized image attributes
�i.e., coarseness, brightness, contrast, noise, etc.� when mea-
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Fig. 2 Resulting PLS b vector for model 2 showing relative weights
in% OD cm−1 versus wavelength number for each measurement
position.
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uring MD, that were also more common to the TiBS spectra,
ut that may potentially impact the TiBS-derived MD rela-
ionship with breast cancer risk.

For some mammograms, the absolute difference in Cumu-
us MD between raters exceeded 10%. Although, excluding
hese mammograms �and associated appended spectra� �mod-
ls 3, 5, and 6� resulted in a slight improvement in PLS train-
ng, it did not improve the estimation of MD in the validation
et. This is because removal of these mammograms likely

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

C

PL
S
Pr
ed
ic
te
d
M
D
(%
)

-40.0

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

C

R
es
id
ua
l(
Y i
-Y

i_
ha
t)

ig. 3 �a� Plot of PLS predicted MD �Ŷi� versus Cumulus MD �Yi� �mo
redicted MD �Ŷi�; �b� plot of residuals �Yi minus Ŷi� versus Cumulus
ournal of Biomedical Optics 064030-
resulted in exclusion of more cases with higher MD compared
to those with lower MD, producing a more homogeneous
training set that no longer covered the variance seen in the
validation spectra data set. Additionally, despite the fact that
participants were selected based on bilateral symmetry of MD
by an expert radiologist, left-right symmetry of Cumulus MD
was within 10% for only 80% of mammogram pairs �data not
shown�. Consequently we treated MD from the left and right
breasts as separate events, rather than averaging them. This
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ecision was also based on the fact that Cumulus MD for each
reast was derived separately and that TiBS spectra were ob-
ained from each breast. Treating each breast as a separate
vent would enable future use of TiBS in women with bilat-
ral variations in MD.

The source of the spectral noise at short wavelengths �i.e.,
ave number 0 to 50; Fig. 1� is due to limited photons tra-
ersing several centimeters of tissue, while the noise at long
avelengths �i.e., wave number 400 to 450, Fig. 1� is due to

he low quantum efficiency of the CCD detector. Although
ome of this noise was translated to the PLS b vector �Fig. 2�,
educing spectral noise using smoothing functions �either
oxcar or Savgol, models 4 to 6�, only improved training of

he PLS algorithm and not the estimation of MD in the vali-
ation data set. Hence, the noisy spectral components did not
ontribute significantly to the sensitivity/specificity of PLS
redicted MD. Instead, it is likely that the noisy components
f the b vector are associated with the step function at longer
avelengths, which likely resulted from appending individual

pectra into a single spectrum �Fig. 1�. We did consider train-
ng the PLS algorithm on each position individually, thereby
voiding the contribution of additional noise to the b vector;
owever, the prediction of MD did not improve �data not
hown�. Furthermore, even though an appended spectrum was
sed, the PLS b vector still captured variations in the contri-
ution of absorbers to each measurement position due to the
ifferent anatomical structures present in each breast quadrant
Fig. 2�. Removing very noisy spectra altogether and/or lim-
ting the wavelength range to omit noisy spectral components

ay be beneficial and should be explored in future work.
The estimation of MD was poorest when Cumulus MD of

ach rater contributed independently to the training of the
LS algorithm, but the same appended TiBS spectrum was
sed each time in training the algorithm �models 7 to 9�.
lthough the 75 versus 25% split for the training and valida-

ion sets, respectively, was maintained in these models, over-
raining of the algorithm still occurred such that the resulting
LS algorithm no longer retained validity on the validation
et �i.e., compared to the other models, the R2 values and
orrelation coefficients were much larger for the training set
elative to the validation set�.

Despite the inherent limitations in the definition of our
LS target �Yi� and the contribution of noise to some spectra
Xi� and the resulting b vector, the R2 and Spearman’s corre-
ation coefficients for the validation sets did not vary greatly
etween models �R2: 0.61 to 0.80; Spearman’s rho: 0.79 to
.90�. This suggests that the limited accuracy of the target and
he quality of the spectral data did not contribute substantially

o PLS prediction of MD �Ŷi� by TiBS and that estimation of
D might be improved with additional data. Most encourag-

ng is the observation that in the majority of cases the regres-
ion slopes ��� were not significantly different from 1.0 �ex-
ept in models 7 to 9� indicating that TiBS derived MD does
ot demonstrate a significant bias. However, even our optimal
LS algorithm �model 2� tended to underestimate MD in
omen with MD �45%, as suggested by our residual analy-

is. This is likely due to the fact that only a limited number of
omen with high MD were available on which to train our
LS algorithm; this should be considered a priority in future
tudies.
ournal of Biomedical Optics 064030-
5 Conclusions
We showed that TiBS can estimate MD on an interval scale
within 10% of Cumulus measured MD in the majority of
women without stratification on age, BMI, and menopausal
status. The limitations in the generation of a gold standard
�i.e., Cumulus MD�, which was used as the target for PLS
training, does not appear to restrict the overall strength of the
attainable correlation between Cumulus MD and PLS pre-
dicted MD, possibly indicating that a similar association �R2

�0.90� can be demonstrated in larger multicenter studies.
Hence, TiBS has the potential to become a noninvasive,
nonionizing-radiation-based method to determine MD without
the requirement for highly trained individuals, such as a radi-
ologist and/or expert raters of mammograms. Compared to
mammography, it can be applied at higher sampling intervals
and can potentially be used to detect changes in MD and
possibly the rate of this change. This latter application of
TiBS would be important for monitoring high-risk popula-
tions �i.e., mutation carriers� and/or women enrolled in
chemoprevention trials. While TiBS can determine MD val-
ues, its ability to demonstrate changes relative to actual breast
cancer risk must still be demonstrated, which would require a
prospective longitudinal study.
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