Measurement of the refractive index of human teeth by optical coherence tomography

Zhuo Meng
X. Steve Yao
Tianjin University
College of Precision Instrument and Opto-electronics Engineering
Optical Polarization Research Center
and
Key Laboratory of Opto-electronics Information Science and Technology of Ministry of Education
Tianjin 300072, China

Hui Yao
Tianjin Stomatological Hospital
Research Center
Tianjin 300041
China

Shoufeng Lan
Tianjin University
College of Precision Instrument and Opto-electronics Engineering
Optical Polarization Research Center
and
Key Laboratory of Opto-electronics Information Science and Technology of Ministry of Education
Tianjin 300072, China

Yan Li
Shoufeng Wang
Tianjin Stomatological Hospital
Research Center
Tianjin 300041
China

Yanni Li
Tianjin University
College of Precision Instrument and Opto-electronics Engineering
Optical Polarization Research Center
and
Key Laboratory of Opto-electronics Information Science and Technology of Ministry of Education
Tianjin 300072, China

1 Introduction

Optical coherence tomography (OCT) is a novel biological imaging technology that has been developed rapidly in the last decade. Since Huang et al. obtained the first OCT image of the tiny structure of the human retina in 1991,¹ many research groups have achieved clear OCT images of both normal and decayed dental tissues and have proven that OCT can be applied to oral medical diagnosis.²–⁴

The refractive index is an important optical parameter of biological tissues, especially for teeth. It has been found that early demineralization caused by caries will alter a tooth’s refractive index; therefore, the accurate measurement of the changes in a tooth’s refractive index can help the early diagnosis of dental caries.⁵ Presently, a relatively successful method for measuring a tooth’s refractive index is the OCT-based focus-tracing method.⁶–⁸ However, such a measurement is difficult to perform in practice because it requires at least two adjustments of the focal point during each measurement and the precise calibration of the numerical aperture of the lens, making the measurement slow and more susceptible to measurement errors. A method to record spatial variations of the refractive index of the porcine renal artery using differential-phase optical coherence microscopy was reported in Ref. 9. However, the calculation of the tissue refractive index requires a priori knowledge of the section thickness and the refractive index of the surrounding medium. Another limitation of this method is that the thickness of the calcite prism pair should be carefully adjusted to introduce the same amount of equivalent phase retardation introduced by the tissue.

This paper describes a simple method based on optical path-length (OPL) matching during an OCT scan for measuring the refractive index of the in vitro teeth. This OCT path-length matching method has the advantages of easy operation, fast measurement, and high accuracy, especially compared...
with the OCT focus-tracing method. As a result, the index distribution profile across a tooth also can be readily obtained. In this paper, we first present the basic structure of our all-fiber polarization-insensitive OCT system, and then describe the principle of the path-length matching method. Finally, we show the measurement results of the refractive indices of different parts of in vitro human teeth and the corresponding refractive index profiles.

2 All-Fiber OCT System

The OCT system utilizes the principle of low-coherence interferometry with a broadband light source to obtain high spatial resolution. To overcome the polarization sensitivity commonly found in all-fiber OCT systems, we developed a polarization-insensitive scheme. Figure 1 is the schematic of our all-fiber polarization-insensitive OCT system.

The system uses a super luminescent diode (SLD) with a 50-nm FWHM bandwidth and a 1310-nm center wavelength as a light source, resulting in a free-space coherence length of 15 μm. We choose 1310 nm because teeth are a highly scattering tissue with their maximum penetration at 1310 nm. Near-infrared light at 1310 nm is well suited for the detection and imaging of interproximal caries lesions.10 Light is delivered to the sample by a gradient index (GRIN) lens with a 3-mm focal length. The reflected light from the exit surface of the GRIN lens is used as the reference light. One arm of the interferometer consists of a fiber stretcher-based scanning optical delay line to scan the optical path delay and a variable delay line (VDL) to match the optical length between the two interferometer arms. A Faraday rotator mirror is placed at each end of both interferometer arms to eliminate polarization fluctuations in the single-mode fiber. Such an arrangement completely eliminates polarization sensitivity, even when the sample arm and the interferometer arms are perturbed. The balanced detector receives the interference signal, and the data acquisition (DAQ) card collects the data and transmits them to the computer. A 1-D translation stage driven by a stepper motor is used for transverse scanning of the sample. The actual group refractive index of water at 1300 nm deviates from the group refractive index by only 1.6%.11 Therefore, we can ignore $dn_p/d\lambda$ and take the measured group refractive index of the sample as the phase index.

To measure the refractive index of a sample, we first place the sample on a metal (unpolished aluminum) plate and then acquire the OCT images. Figure 2 shows a schematic diagram of the sample on the metal plate, where the vertical position of the metal plate’s reflection surface is z_0, the vertical position of the sample surface is z_1, the thickness of the sample is d, and the refractive index of the sample is n_S.

Figure 3(a) is a 2-D OCT image (B-scan) of a glass slide on the metal plate that shows the change in the metal plate’s vertical position caused by the glass slide. The left portion of the image shows the position of the metal plate without the glass slide present, while the right portion shows its position with the glass slide. The upper surface position of the glass also can be seen clearly. As expected, the depth of the metal plate increases when the glass slide is on top (the position of the metal plate surface changes from z_0 to z_1), which results from the optical path-length increase caused by the relatively large refractive index of the glass (compared with the air). Assuming that the increase in the optical path-length induced by the glass plate (sample) is z_1-z_0 and the actual thickness of the sample is $z'_1-z'_0$, we can obtain the relationship between the thickness and the refractive index of the glass slide (sample):

$$d = z_1 - z_0 = \frac{(z_1 - z'_0)}{n_S}. \quad (2)$$

Therefore, the refractive index of the sample can be obtained from Eq. (2) as

$$n_S = \frac{z_1 - z'_0}{z_1 - z'_0}. \quad (3)$$

Figure 3(b) is a 1-D OCT image (A-scan) derived from Fig. 3(a). The dotted line is the reflected light from the surface of the metal plate without the glass slide, and its posi-
tion is \(z_0 \). The solid lines are the reflected light from the upper surface of the sample and the metal plate whose positions are \(z_1 \) and \(z'_0 \), respectively. By Substituting of the values of \(z_0, z'_0, \) and \(z_1 \) into Eqs. (2) and (3), we can obtain the refractive index \((n_S) \) and the thickness \((d) \) of the glass slide to be \(n_S = 1.5072 \) and \(d = 1.035 \) mm. For reference, the refractive index of a common glass slide is 1.515. Both the index and the thickness are sufficiently close to the values obtained with the OCT method to validate the method’s correctness (the errors in index and thickness are 0.8% and 0.5%, respectively).

Note that at 1310 nm, the attenuation of light inside teeth is primarily from scattering, and the absorption is negligible. Consequently, the imaginary part of the index of refraction can be ignored. In addition, our method is based on the phase measurement of interfering beams, and there are no apparent attenuation variations within the bandwidth of the SLD source used in the experiment; therefore, any absorption or imaginary part of the index will have little impact on the measurement results.

\[z_0' = 1275 \quad z_0 = 1800 \quad z_1 = 2835 \]\n
Fig. 3 OCT image of the glass slide: (a) 2-D OCT image of the metal substrate and the glass slide; (b) 1-D OCT image of the metal substrate and the glass slide.

4 Results of Teeth Measurement

We measured the enamel, dentin, and cementum of in vitro human teeth. In the experiment we first cut and polished freshly removed teeth into thin slices with a slice thickness of 300 to 400 \(\mu \)m, and then placed each tooth slice onto the metal plate to replace the glass slide in Fig. 2. When not in use, these tooth slices were kept in distilled water. Finally, we took B-scan OCT images of the tooth slices placed on the metal plate. The results are shown in Fig. 4. Figures 4(a)–4(c) are the OCT images of an enamel slice, a dentin slice, and a cementum slice, respectively.

We measured 20 samples of the in vitro human tooth slices separately, and the resulting refractive indices of the enamel, the dentin, and the cementum were 1.631 ± 0.007, 1.540 ± 0.013, and 1.582 ± 0.010, respectively. In Refs. 15 and 16, the refractive indices of enamel and dentin were 1.60 to 1.65 and 1.50 to 1.55, respectively. Thus our measurement results were consistent with those of Refs. 15 and 16, but with much better accuracy. As reported in Ref. 5, the ranges of refractive index of noncarious and carious enamels are 1.623 ± 0.005 and 1.628 ± 0.004 respectively at the wavelength of 577 nm. We expect the index difference between the noncarious and carious enamels to be similar at 1310 nm and that the resolution of our measurement method is sufficient to detect the changes in refractive index caused by caries. We are currently performing further experiments to measure the indices of noncarious and carious enamels at 1310 nm and will publish the results elsewhere. We performed an analysis of variance (ANOVA) using the 20 sets of refractive index data of dentin and cementum to ensure the refractive indices of dentin and cementum had statistically significant differences. We found that the mean within-group variance of dentin and cementum was 0.00039297 and the variance of the group means was 0.017736731. The corresponding F-test (the ratio of variance of the group means and mean within-group variance) was 451.35, well above the required F-test of 7.35 from the ANOVA look-up table. Therefore, we are certain that the measured indices of dentin and cementum were statistically different.

We did not take the polarization effect into account in the measurements so the resulting data are the average of ordinary and extraordinary indices. Further polarization-sensitive OCT measurements are under way to separately measure both indices.

Figure 5(a) is a photographic image of an in vitro tooth slice subject to refractive index measurement. We took a B-scan along the direction marked with a white line in Fig. 5(a) and obtained the 2-D OCT image shown in Fig. 5(b). Using the path-length matching method described above, we obtained the refractive index distribution profile shown in Fig.
across a tooth with a single OCT B-scan. With this method, we obtained the refractive indices of the enamel, the dentin, and cementum of in vitro teeth using 20 different tooth slice samples. We also obtained the refractive index distribution profile of the in vitro human teeth. Such an accurate determination of a tooth’s refractive indices at different locations is important for the early diagnosis of dental caries that may cause local changes in the refractive index. Equipped with this tool, we can quantitatively study the changes in the refractive index induced by caries and dental decay in detail and relate the data to the early diagnosis of dental caries.

Acknowledgments
This paper is supported by the National Nature Science Foundation of China under Grant No. 30770597.

References