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bstract. Face clustering is gaining ever-increasing atten-
ion due to its importance in optical image processing. Be-
ause traditional clustering methods do not specify the par-
icular characters of the face image, they are not suitable for
ace image clustering. We propose a novel approach that
mploys the trace ratio criterion and specifies that the face

mages should be spatially smooth. The graph regularization
echnique is also applied to constrain that nearby images
ave similar cluster indicators. We alternately learn the opti-
al subspace and the clusters. Experimental results demon-

trate that the proposed approach performs better than other
earning methods for face image clustering. © 2009 Society of
hoto-Optical Instrumentation Engineers.
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Introduction

uman face clustering is an important research direction in
he field of optical image processing. It has been success-
ully used in many fields. For example, in face image re-
rieval, if we can automatically cluster different kinds of
ace images, then it will beneficial to discover the latent
imilarities among various face images. The computational
ost of searching for an interested face image will also
educe considerably.

Currently, a lot of research has been proposed for face
mage processing. However, most of it focuses on learning
subspace for face classification �i.e., classify the face im-

ges in the learned subspace with a certain number of la-
eled samples�. The most prominent approach is called the
isherface.1 It employs the supervised method, linear dis-
riminant analysis �LDA�,2 for face classification.

There is little work dedicated to learning a subspace for
ace image clustering. One direct way is to employ the
raditional clustering techniques �e.g., K-means3� for clus-
ering. Nevertheless, it is difficult for K-means to achieve a
atisfied accuracy because the vector representations of
ace images have very high dimensionality �commonly, the
umber of pixels of a image�. Then, one of the most fa-
ous works, which is named PCA+K-means, is proposed.

t employs the unsupervised principle component analysis
PCA�2 technique to compute the famous Eigenface1 and
hen applies the K-means approach for clustering. Although

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 060501-
it has achieved prominent performances in many applica-
tions, PCA+K-means seems unsuitable for face image
clustering. It takes into account few considerations about
the special characters and manifold structures of face
images.4 Recently, Ding et al. extended the traditional su-
pervised LDA method for clustering.5 The method, which is
called LDA-Km, combines LDA with K-means and learns
the subspace and clusters alternately. It has been reported
that LDA-Km performs better than the K-means and the
PCA+K-mean approaches.5 However, it also gives no con-
siderations to the manifold structure and the spatial smooth
character6 of face images. Additionally, LDA-Km applies
the traditional ratio trace criterion, not the more prominent
trace ratio criterion.7 The accuracy of LDA-Km is not as
high as expected for face image clustering.

In this paper, we propose a new method, which is named
as subspace clustering via trace ratio �SCTR� for face im-
age clustering. First, it applies the trace ratio criterion,
which has been shown more effective for discriminative
subspace learning.7 Second, we employ the spatial smooth
regularizer, which represents the particular character of im-
ages. Finally, we consider the manifold structure by inten-
tionally adding the graph-smooth constraint. After comput-
ing the optimal clustering and learning the subspace
alternately, we can finally derive the subspace and cluster-
ing results simultaneously. Experiments show that SCTR
performs better than the state-of-the-art approaches.

2 Leaning a Subspace for Face Image Clustering

2.1 Problem Formulation

Assume X= �x1 ,x2 , . . . ,xl� are vector representations of l
face images, which are all of D1�D2 resolutions. Here
xi�RD for i=1,2 , . . . ,N and D=D1�D2. The number of
clusters is predefined as C. The purpose of our method is to
find the subspace in which these face images can be opti-
mally clustered. More concretely, under a given criterion,
we plan to find the transformation matrix W�RD�d and
simultaneously, the indicator matrix F�Rl�C. Here, d is
the dimensionality of the subspace. Fij =1 /�lj if xi belong
to the jth cluster, and Fij =0 otherwise, where lj is the num-
ber of samples in the jth cluster.

It has been shown7 that the trace ratio criterion is much
more effective than the ratio trace, which is widely used in
the traditional LDA approach and its variants. We employ
the trace ratio criterion in our approach. Mathematically,
assume Y = �y1 ,y2 , . . . ,yl� are the embddings of X �i.e., Y
=WTX�. The within scatter matrix Sw and the total-scatter
matrix St are defined as follows:

Sw = �
j=1

C

�
i=1

lj

�yi − mj��yi − mj�T = YLwYT,

St = �
i=1

l

�yi − m��yi − m�T = YLtY
T, �1�

where mj = �1 / lj��i=1
lj yi �j=1,2 , . . . ,C� is the mean of the

samples in the j’th cluster, m= �1 / l��i=1
l yi is the mean of all

samples. The corresponding L and L are
w t
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w = I − FFT, Lt = I −
1

l
eeT, �2�

here e is an l-dimensional column vector with all ones.
he trace ratio criterion proposed in Ref. 7 is

rg min
WTW=I

tr�WTSwW�
tr�WTStW�

. �3�

We now consider the spatial character of images. Be-
ause an image represented in the plane is intrinsically a
atrix. The pixels spatially close to each other may be

orrelated. Although we have D1�D2 pixels per image,
his spatial correlation suggests the real number of freedom
s far less. We employ a spatial regularizer �i.e., the Laplac-
an penalty� to constrain the coefficients to be spatially
mooth.6 In brief, we define the Dj �Dj �j=1,2� matrices
hat yield the discrete approximation of the second-order
erivation as follows:

Mj =
1

hj
2�

− 1 1 0

1 − 2 1

¯ ¯ ¯

1 − 2 1

0 1 − 1
� . �4�

ere, hj =1 /Dj for j=1,2. The discrete approximation for
he two-dimensional Laplacian is a D�D matrix

= M1 � I2 + I1 � M2, �5�

here Ij is the Dj �Dj identity matrix for j=1,2. � repre-
ents the Kronecker product of two matrixes.

For a D1�D2 image vector x, 	�x	2 is proportional to
he sum of squared differences between nearby grid points
n that image. It can be used to measure the smoothness of
n image on a D1�D2 lattice. Because each column vector
f W can be regarded as a basis image, we add ��T� to Sw
here 0���1 is a balance parameter that controls the

moothness of the estimator.
Finally, as in most learning-based face image processing

pproaches1 we assume that the face images, which belong
o the same cluster, are nearly lying on a low dimensional
anifold. The graph Laplacian4 �i.e., L� is employed to

epresent this character. Intuitively, the cluster indicators of
ace images belonging to the same cluster should be iden-
ical. In other words, if we regard that the cluster indicators
re the output of a function defined on all face images, this
ntuition indicates that the predefined function should be
mooth on these manifolds. Mathematically, it is equal to
inimize tr�FTLF�.
In summary, we define SCTR as the solution to the fol-

owing problem:

rg min
WTW=I,FTF=I

�1 − ��
tr��1 − ��WTSwW + �WT�T�W�

tr�WTStW�

+ � tr�FTLF� = arg min
WTW=I,FTF=I

�1

− ��
tr
�1 − ��WT�X�I − FFT�XT + ��T��W�

tr�WTXL XTW�
t

ptical Engineering 060501-
+ � tr�FTLF� , �6�

where 0���1 is also a balance parameter.

2.2 Solution
There are totally two different kinds of variables that
should be optimized �i.e., W and F�. It is difficult to com-
pute them simultaneously. We alternately optimize them.

2.2.1 Stage one: fixing F and optimizing W
In this situation, the optimization problem in Eq. �6� be-
comes

arg min
WTW=I

tr
WT��1 − ��X�I − FFT�XT + ��T��W�
tr�WTXLtX

TW�
. �7�

It has the same form as the problem proposed in Ref. 7,
except for a little differences in the formulation of the nu-
merator. Thus, we can directly employ the same technique.
It is an iterative procedure. For our problem, in the p’th
step, we solve a trace difference problem

arg min
WTW=I

tr
WT��1 − ��X�I − FFT�XT + ��T�

− �pXLtX
T�W� ,

where �p is the trace ratio value calculated from the previ-
ous projection matrix Wp−1 in the previous step. Please see
Ref. 7 for more details.

2.2.2 Stage two: fixing W and optimizing F
In this case, because Lt and � have no relation with F, the
optimization problem in Eq. �6� is equivalent to

arg max
FTF=I

tr
FT��1 − ���1 − ��XTWWTX

− � tr�WTXLtX
TW�L�F� . �8�

This problem can be effectively solved by spectral de-
composition technique. In fact, the optimal F to the prob-
lem in Eq. �8� is formed by the eigenvectors corresponding
to the C largest eigenvalues of �1−���1−��XTWWTX
−� tr�WTXLtX

TW�L.

2.3 Discussions
There are two essential parameters �i.e., 0���1 and
0���1� in our method. They control the smoothness of
estimator and the balance of two objectives. When �=0,
SCTR totally ignores the spatial character of the face im-
age. When �→1, SCTR tends to only choose a spatial
smoothest basis and ignore the discriminative information.
When �=0, we ignore the smooth constraint on F. If
�=1, SCTR only concerns the smoothness of F.

Parameter determination is an essential task in most of
the learning algorithms.6 Among various kinds of methods,
grid search is probably the simplest and most widely used
one for unsupervised learning. Because we have con-
strained 0���1 and 0���1, we apply the grid search
technique in this paper. More concretely, we set � and � by
searching the grid 
0.1,0.2, . . . ,0.9�� 
0.1,0.2, . . . ,0.9�.

There are another three problems that should be indi-
cated here. �i� Because SCTR is an iterative approach, a
June 2009/Vol. 48�6�2
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irect way to initialize the iteration is to first compute F by
-means and then optimize the problems in Eqs. �7� and �8�
lternately. �ii� The optimal F that maximizes Eq. �8� may
ot have the form of the indicator matrix that we specified
n the previous part. We apply the discretization procedure
n Ref. 8 to solve this problem. �iii� Because we have de-
ived W and F, it is easy to compute the embedding and the
luster of a new image by using W and F directly.

Experiments

e employ four different kinds of face image data sets for
llustration. They are the Yale data, the ORL data, the Umist
ata, and the first 20 classes of Feret data. All these images
re rescaled to 16�16 resolutions.

We compare SCTR with K-means, PCA+K-means, and
DA-Km. Two standard measurements—the accuracy

Acc� and normalized mutual information �NMI�—are
sed. The parameters � and � are determined by grid
earch and d=C−1. We randomly initialize K-means and
epeat for 100 times. The average values of these Accs are
isted in Table 1. Figure 1 shows the corresponding mean of
hese NMIs.

As seen from Table 1 and Fig. 1, SCTR performs the
est. It achieves both the highest mean Acc and the largest
ean NMI in all cases. Because all the images are rescaled

able 1 Mean accuracy �Acc� results of different methods on four
ace image data sets.

K-means PCA+K-means LDA-Km SCTR

ale 0.379 0.385 0.459 0.491

RL 0.497 0.513 0.607 0.674

mist 0.381 0.383 0.468 0.501

eret 0.374 0.372 0.526 0.551

Yale ORL Umist Feret
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Face image data

N
M

I

K−means
PCA+K−means
LDA−Km
SCTR

ig. 1 Mean normalized mutual information �NMI� on the Yale, the
RL, the Umist and the Feret data sets.
ptical Engineering 060501-
to be low resolution and the dimensionality is not so high,
it seems that K-means and PCA+K-means have the similar
performances on these data sets. LDA-Km performs better
than K-means and PCA+K-means.

We have also done some experiments on the Yale data
set with different parameters, which are set by the grid
search. The Acc results versus different � and � are shown
in Fig. 2. It seems that for Yale, smaller � and � are more
suitable. The best parameter �=0.3 and �=0.1.

4 Conclusions

We propose a new subspace learning method for face image
clustering. It integrates the spatial characters and the mani-
fold structures of face images. By alternately computing the
subspace and clusters, it performs best among all the in-
volved approaches.
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