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bstract. We report on a comparison between a full-
hysical resist model that was calibrated to experimental

ine/space �L/S� critical dimension �CD� data under the
at-mask �also called “thin-mask” or “Kirchhoff”� approxima-
ion with the model obtained when using a mask 3-D calcu-
ation engine �i.e., one that takes into account the mask-
opography effects�. Both models were tested by evaluating
heir prediction of the CDs of a large group of 1-D and 2-D
tructures. We found a clear correlation between the
easured-predicted CD difference and the magnitude of

he mask 3-D CD effect, and show that the resist model
alibrated with a mask 3-D calculation engine clearly
ffers a better CD predictability for certain types of
tructures. © 2009 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.3158356�

ubject terms: lithography simulation; full-physical resist modeling;
ask 3-D effects; mask-topography effects.

aper 09003LR received Jan. 14, 2009; revised manuscript re-
eived May 13, 2009; accepted for publication May 18, 2009; pub-
ished online Jul. 1, 2009.

Calibration of full-physical resist models1–4 has a long
ecord of use and is constantly being refined to offer better
redictability to rigorous simulators, such as Sentaurus Li-
hography™ of Synopsys or Prolith™ of KLA-Tencor. We
sed a large experimental critical dimension �CD� data set,
hich was generated for the purpose of optical proximity

orrection �OPC�-model building, to assess the importance
f mask 3-D �or mask-topography� effects in resist-model
alibration. The CD data was measured with a top-down
itachi H9380 scanning electron microscope from a
20 nm TOK TArF-Pi6-001-ME resist on 95 nm ARC29SR
arc on Si wafer exposed with an NA=1.20 ASML
T:1700i immersion scanner, using cQuad20 �outer /�inner
0.96 /0.60 XY-polarized illumination. The experimental
D data consisted of two types. The first type consisted of
ossung �i.e., through-dose and -focus� data for 30 L/S

tructures, with pitches between 100 and 400 nm. The re-
ist models were essentially calibrated using �part of� these
/S Bossungs only. The second CD-data group ��5000 dif-

erent structures� was measured at a single dose-focus set-
ing only and was used for verifying the resist models.
t consisted of more 1-D-type data �L/S structures with

932-5150/2009/$25.00 © 2009 SPIE
. Micro/Nanolith. MEMS MOEMS 030501-
and without SRAFs, isolated lines and trenches and
line and trench doublets and triplets�, end-of-line �EOL�
gap-CD data and of CDs measured from more complicated
2-D structures �which we shall call the Generic 2-D
or G2D structures�. Most of the structures in this data
set are located on the mask in a locally clear-field
area, but others are located in a locally dark-field area.
The resist-model quality is then quantified by first
calculating the measured-predicted CD difference,
�CD�CD�measured-CD�simulated, for all individual
verification structures. In view of the very large number of
structures in the verification set ��5000�, we reduced this
�CD data set by calculating the mean value �Mean��CD��
and the standard deviation �StDev��CD�� for a number
of—somewhat arbitrarily chosen—subsets of this
verification-structure group.

In Fig. 1, we represent such a verification result, by plot-
ting these Mean��CD� values for each of the selected
structure subsets �the labels we use for these subsets are
explained in the caption of Fig. 1�. The error bars in Fig.
1�b� actually stand for the �StDev��CD� values �i.e., they
are not actual error bars but represent the variation of the
�CD values in each structure subset. Figure 1�b� shows the
raw �CD data for four such subsets�. We made a separate
calculation with a Prolith10.2 and a Sentaurus Lithography
�or S-Litho� resist model, both calibrated under the
Kirchhoff- or flat-mask-approximation to the experimental
Bossung data, and Fig. 1�b� shows the result for both. Al-
though both simulators �most likely� do not use identical
resist-modeling equations, there is a striking similarity in
the result of Fig. 1�b�: some structure groups are clearly
less well predicted, which is best recognized in Fig. 1�b� as
a larger �Mean��CD��. This seems to occur primarily in the
CDs measured from the locally dark structures �i.e., the
isolated trenches, trench doublets, and trench triplets
�which are labeled as ISO�Inv, B2Inv, and B3Inv, respec-
tively��.

One could surely think of a number of reasons why
these locally dark structures would be predicted less well,
and some of these would point to the resist-model equa-
tions or the calibration structures used, but a correlation
shown in Fig. 2 has led us to believe that mask 3-D or
�mask topography� effects5 take a large part in the explana-
tion. This correlation plot compares the measured-
simulated CD difference �i.e., the �CD data, used above� to
the mask 3-D CD contribution �simulated while not using
the Hopkins approximation6, i.e., solving the diffraction
equations at the “correct” angles of incidence on the mask�.
This mask 3-D CD contribution is calculated as follows.
Using the resist model calibrated under the Kirchhoff ap-
proximation, we switched the simulator to one of the avail-
able mask 3-D calculation engines �RCWA in Prolith and
FDTD in S-Litho� and recalculated the CDs of all verifica-
tion structures: the difference with the original CD �i.e., the
CD obtained under the Kirchhoff approximation� was then
taken as the above mentioned mask 3-D CD contribution.
Note that these CD recalculations using the mask 3-D
solver were done after also adjusting the simulation dose,
such that a chosen “anchor structure” prints at the same CD
as in the Kirchhoff-calculation case. We, somewhat arbi-
trarily, took a pitch 100-nm mask linewidth 43.5 nm L/S
Jul–Sep 2009/Vol. 8�3�1
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tructure as the anchor structure. We calculated this mask
-D CD contribution for all 1-D structures in the
erification-structure set. Figure 2 shows that this mask 3-D
D contribution correlates well with the �CD measured-

imulated difference, at least for those structures for which
he mask 3-D CD contribution is relatively large �say larger
han �10 nm�; for structures with a smaller 3-D effect,
here is no correlation any more. This explains why the
esist models calibrated under the Kirchhoff approximation
o not predict certain structures as well because they sim-
ly do not incorporate this mask 3-D CD contribution ef-
ect.

What, then, can we do to further improve the resist
odel? The simplest way to try to incorporate mask 3-D

ffects in the full-physical resist model simulations would
e to keep the resist model as fitted to the experimental
ossung data under the Kirchhoff approximation �we shall
all this the Kirchhoff resist model� and simply switch the
ask-diffraction solver to the 3-D calculation engine, ad-

usting the dose again to keep the anchor structure at the
ame CD, but without any further changes. The resulting
ean��CD� verification data are shown as the open-

riangle curve of Fig. 3; plotting �StDev��CD� again as
error bars.” It is clear that this approach makes the
easured-simulated agreement worse for most structures.
The better—though more time-consuming—approach is

o replace the Kirchhoff-approximation-based resist model
ith a completely new one, obtained from a refit of the

xperimental Bossung data with the simulator set to the
ask 3-D engine already in the calibration step, thus ob-

aining what we shall call a Mask 3-D resist model. The
econd curve of Fig. 3 shows that verification now drasti-
ally improves for those structures that were most deviating
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ig. 1 �a� Example of �CD�CD�measured-CD�simulated results fo
f line-doublet and trench-doublet–type structures �labeled further o
verage value of �CD-, obtained with two different Kirchhoff resist m
orrespond to ±StDev��CD�, i.e., the variation of �CD around the
ithout SRAFs �labeled LS and LS�AF, respectively, on the horizon

ISO� and isolated trenches �ISO�Inv�, trench doublets and triplets
atter, the line end faces a perpendicularly oriented line�, and more c
riplets, all the different line- and trench- or space-CDs were measu

space between resist structures.
. Micro/Nanolith. MEMS MOEMS 030501-
in Fig. 1�b�, while retaining the agreement for the others.
�Note that we applied this Mask 3-D resist model to all the
1-D and EOL structures of our verification set; the more
complex G2D structures were not tried because of the ex-
cessive calculation time they would require.�

Conclusion
The data presented in this paper make it clear that mask
3-D effects also play a role in resist calibration at hyper
NA. Usually, resist calibration is done under the flat-mask
or Kirchhoff assumption. From a calculation-effort point of
view, this is a logical choice, in view of the larger CPU-
and/or memory-consumption when doing mask 3-D calcu-
lations, but one must realize that when doing so, mask 3-D
effects will be absorbed into the resist parameters. In cases
where mask 3-D effects are not too high, this can still be an
acceptable practice. Taking the data of this paper, if we
exclude the locally-dark structures from the verification set,
our Kirchhoff models would have done the job well. In-
cluding these more mask 3-D sensitive structures, however,
makes the Kirchhoff models much less convincing. It is
therefore necessary to be aware of the mask 3-D sensitivity
of the target structures, if accurate CD prediction is in-
tended. �A more detailed discussion of why it are the locally
dark-field structures that seem to “suffer” most from the
absence of mask 3-D effect in the resist-model calibration,
e.g., by considering differences in mask-diffraction spectra
or image-intensities in resist between the Kirchhoff and
mask 3-D calculation would obviously be interesting, but
falls outside the scope of a letter. To be noted also is that as
in all cases we adapt the simulation dose to fix the CD of
the anchor structure, part of the mask 3-D effect is also
absorbed in this dose retargeting, which further compli-
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ates the detailed interpretation of our result.�
Do our results mean that we always should calibrate

esist models under mask 3-D conditions? Unfortunately,
igorous mask 3-D effects are not feasible in many practical
ases. The absence of mask 3-D simulated CD data in Fig.
for the G2D structures of our study illustrates this point

ainfully well: the calculation time required for rigorous
-D simulations over mask areas of several microns in both
and Y becomes exceedingly large. �Note that isolated 1-D

tructures or EOL structures can be calculated within a very
easonable time because the simulated mask area in X or Y
emains submicron.� This calculation-time limitation ex-
lains why attempts have been made to come up with a
ask 3-D equivalent Kirchhoff mask, in which, e.g., trans-
ission, phase, or the mask dimensions were altered such

hat the resulting CDs approximate the CD-values obtained
rom rigorous mask 3-D calculations. Although these ap-
roaches have had some success,7,8 their applicability has
een demonstrated for specific structure sets only. Thus,
ore work would be required in proving general applica-

ility as well as the absence of artifacts before such equiva-
ent Kirchhoff masks could be safely employed for a wide
ariety of structures.

We would like to conclude with a final note on OPC
odeling of the verification CD data of this paper: We were

ble to obtain a very good OPC-model fit to the entire CD
ata set �i.e., including both dark- and bright-field struc-
ures� while still using a Kirchhoff calculation engine �we
btained an rms value of 1.6 nm�. Thus, apparently, the
PC model contained enough degrees of freedom to
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ig. 2 Correlation of the mask 3-D CD contribution �calculated as
he difference between the mask 3-D simulated CD to the Kirchhoff-
imulated CD for each individual structure� with the simulated-
easured CD difference ��CD�.
. Micro/Nanolith. MEMS MOEMS 030501-
largely absorb the mask 3-D effects in this case. Neverthe-
less, we are currently also investigating to which extent
OPC model accuracy could improve if mask 3-D effects
would be incorporated, because some improvement should
be expected, especially for the type of extended hyper-NA
data sets dealt with in this letter.
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