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Abstract. Our goal is to compare and contrast various image recon-
struction algorithms for optoacoustic tomography �OAT� assuming a
finite linear aperture of the kind that arises when using a linear-array
transducer. Because such transducers generally have tall, narrow ele-
ments, they are essentially insensitive to out-of-plane acoustic waves,
and the usually 3-D OAT problem reduces to a 2-D problem. Algo-
rithms developed for the 3-D problem may not perform optimally in
2-D. We have implemented and evaluated a number of previously
described OAT algorithms, including an exact �in 3-D� Fourier-based
algorithm and a synthetic-aperture-based algorithm. We have also
implemented a 2-D algorithm developed by Norton for reflection
mode tomography that has not, to the best of our knowledge, been
applied to OAT before. Our simulation studies of resolution, contrast,
noise properties, and signal detectability measures suggest that
Norton’s approach-based algorithm has the best contrast, resolution,
and signal detectability. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction
ptoacoustic imaging is a hybrid imaging technique that has

ttracted a lot of attention in recent years.1,2 It is based on the
hotoacoustic/optoacoustic effect, which refers to acoustic
ave generation upon absorption of pulsed optical energy by
medium. A slight rise in temperature of the medium due to

he absorption of the incident electromagnetic wave results in
hermoelastic expansion. This thermoelastic expansion and
ubsequent contraction leads to the generation of acoustic
aves. Under the constraints of thermal and stress confine-
ent, this thermal expansion leads to a rise in pressure,

p�r , t�, that satisfies the three-dimensional �3-D� inhomoge-
eous wave equation3:

�2p�r,t�
�t2 − c2�2p�r,t� =

�

Cp

�

�t
H�r,t� , �1�

here H�r , t�, the heating function, is the thermal energy de-
osited by the electromagnetic radiation per unit time per unit
olume, � is the isobaric volume expansion coefficient, and

p is the specific heat of the medium. The heating function
an be expressed as the product of a spatially varying ab-

ddress all correspondence to: Dimple Modgil, Department of Radiology, The
niversity of Chicago, 5841 South Maryland Avenue, MC-2026, Chicago, IL
0637. Tel: 773-834-9051, Fax: 773-702-3766; E-mail: dimple@uchicago.edu
ournal of Biomedical Optics 044023-
sorbed optical energy in the medium, A�r�, and a time-
dependent optical illumination function, I�t�. The absorbed
optical energy in the medium is the product of the optical
absorption function and the optical fluence.

Optoacoustic tomography �OAT� is inherently a 3-D in-
verse problem. The sound waves generated by a 3-D distribu-
tion of optoacoustic sources are spherical waves radiated into
the volume surrounding the sources. These 3-D optoacoustic
signals can be detected using isotropic ultrasound detectors
arrayed on a 2-D measurement aperture, and a 3-D image can
be reconstructed using these signals. However, detection of
these signals using a 1-D linear array of transducers and re-
construction of a 2-D image slice is sometimes more practical
and cost-effective, especially in a clinical setting. The prob-
lem can be reduced to 2-D by making one of the following
assumptions, using the terminology in the paper by Kostli and
Beard:4

• Two-dimensional source distribution
• Two-dimensional source directivity
• Two-dimensional detector directivity.
Two-dimensional source distribution implies that the

source is truly 2-D and that it lies in the detection plane. This
is not a very realistic scenario for biomedical applications
since there are generally 3-D sources present in the human

1083-3668/2009/14�4�/044023/9/$25.00 © 2009 SPIE
July/August 2009 � Vol. 14�4�1



b
s
s
t
T
t
d
k
p
d
H
fi
e
o
c
p
w
t
t
i

3
p
s
c
a
t
r
d
i
a
d
c
p
r
t
d
t
k
g
e

d
a
i
a
g
n
a
t
o
k
c

2

T
t
A

Modgil and La Rivière: Implementation and comparison of reconstruction algorithms…

J

ody. The second assumption implies that even though the
ource is 3-D, it is constant in the third direction. This kind of
ource will be highly directional, and the signals received by
he detector will be only from sources in the detection plane.
he third assumption is relevant for highly directional detec-

ors that are insensitive to signals coming from outside the
etection plane. Thus, a 2-D cross-sectional slice of the un-
nown source is reconstructed, and the image reconstruction
roblem is reduced to 2-D. All three assumptions imply that
etected acoustic signals are from only in-plane sources.
owever, these assumptions are not exactly equivalent. The
rst two assumptions impose constraints on the source geom-
try that may not exist. This limitation can affect the accuracy
f the resulting 2-D reconstructed image that may be espe-
ially important for quantitative optoacoustic imaging. In this
aper, we consider the scenario based on the third assumption,
here the problem is reduced to 2-D due to detector’s direc-

ivity. This is achieved by using a linear array of anisotropic
ransducers that have tall, narrow elements that are essentially
nsensitive to out-of-plane acoustic waves.

There are several algorithms that have been proposed for
-D image reconstruction in OAT for measurements over a
lanar aperture. These include the Fourier-based algorithm,4–6

ynthetic aperture �SA� algorithm,7,8 synthetic aperture plus
oherent weighting algorithm,9 and universal back-projection
lgorithm.10 Some of these algorithms have also been applied
o image reconstruction in 2-D OAT. The Fourier-based algo-
ithm is theoretically exact in 3-D for continuously sampled
ata on an infinite measurement aperture but not necessarily
n 2-D. This algorithm implicitly uses the preceding second
ssumption when applied in 2-D—namely, that the object
oes not vary in the third direction. Synthetic aperture and
oherent weighting algorithms,7–9 on the other hand, are ap-
roximate reconstruction algorithms. There exists an algo-
ithm in reflection mode tomography, proposed by Norton,11

hat is theoretically exact in 2-D for continuously sampled
ata on an infinite measurement aperture. We have applied
his algorithm to OAT for the first time �to the best of our
nowledge�. We have implemented this algorithm for a planar
eometry using a linear transducer array with tall, narrow
lements.

Of course, no algorithm is theoretically exact for sampled
ata acquired on a finite interval, so this paper compares these
lgorithms for that practically relevant regime by examining
mage contrast, resolution, and noise properties. The studies
re performed using simulated optoacoustic pressure data. We
o beyond the standard image quality metrics by computing
oise texture measures like local noise power spectra �LNPS�
nd resolution measures like local modulation transfer func-
ion �LMTF�. These noise and resolution measures are used to
btain the local noise equivalent quanta �LNEQ� metric that is
nown to predict signal detectability under certain
onditions.12

Methods

he optoacoustic pressure signals, p�r , t�, for an impulse op-
ical illumination, are related to the absorbed optical energy
�r�13 as
ournal of Biomedical Optics 044023-
p�r,t� = �� d3r�A�r��
�

�t

��t −
�r − r��

c
�

4��r − r��
, �2�

where �=� /CP. Equation �2� states that the time integral of
acoustic pressure at a point r and time t is given by the inte-
gral of the absorbed optical energy function over a spherical
surface of radius �r−r��=ct centered at r. A simple but inex-
act way to reconstruct A�r� is to spatially resolve the optoa-
coustic waves by using the speed of sound and to back-project
them over hemispheres. In 2-D geometry, this reduces to spa-
tially resolving the optoacoustic waves by using the speed of
sound and back-projecting over semicircles to obtain a 2-D
slice of A�r�. This is the method followed by the synthetic
aperture algorithm.

Let us consider a line of transducers along the x axis �i.e.,
at y=0, z=0�. Let A�x ,z� represent an effective 2-D slice of
the absorbed optical energy function in the half-plane �y=0,
z�0�. The pressure signals in 2-D reduce to �as derived in the
Appendix�

p�x,z = 0,t� =
�c

4�
� � dx�dz�A�x�,z��

�

�t
��ct − ��x − x��2

+ z�2	1/2
 . �3�

Define g�x , t� as:

g�x,t� �
4�

�c
� p�x,t��dt� =� � dx�dz�A�x�,z����ct − ��x

− x��2 + z�2	1/2
 . �4�

We will consider three algorithms for our study: an ap-
proach based on Norton’s algorithm, the Fourier-based ap-
proach, and the synthetic aperture algorithm. We will not con-
sider the synthetic aperture plus coherent weighting algorithm
since it is nonlinear due to the presence of the coherence
factor, and nonlinear algorithms cannot be meaningfully char-
acterized using the LMTF, LNPS, and LNEQ functions.

2.1 Application of Norton’s Algorithm for Reflection
Mode Tomography to OAT

In this section, we derive an exact expression for optoacoustic
image reconstruction in 2-D closely following derivation of
an algorithm by Norton for reflection mode tomography.11

Letting r�ct and using the identity, ��r−a�=2r��r2

−a2�, one can write Eq. �4� as:

g�x,t� = 2r� � dx�dz�A�x�,z����r2 − �x − x��2 − z�2	 .

�5�

Defining new variables, �=r2, �=z2, and substituting in Eq.
�5� yields
July/August 2009 � Vol. 14�4�2
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g�x,�� = ��� � dx�d��
A�x�,����

���
��� − �x − x��2 − ��	 .

�6�

ast, setting

g��x,�� =
g�x,���

��
, �7�

nd

A��x,�� =
A�x,���

��
, �8�

q. �6� becomes

g��x,�� =� dx�d��A��x,����� − �� − �x − x��2	 , �9�

hich can be written as a 2-D convolution:

g��x,�� = A��x,�� � � ��� − x2� . �10�

This convolution relation can in principle be solved for A�
y taking a 2-D Fourier transform on both sides of Eq. �10�
ith respect to x and �. The 2-D convolution in Fourier space
ecomes multiplication of the 2-D Fourier transforms due to
he convolution–multiplication theorem. This can then be ex-
licitly solved for the Fourier transform of A�, and on taking
he inverse 2-D Fourier transform, one obtains A��x ,��. The
ransformation of g�x , t� into g��x ,�� by Eq. �7� can be re-
arded as a 1-D geometric distortion of the x−r plane in the r
irection. The double convolution relation, Eq. �10�, implies
hat the time-integrated pressure signal is equivalent to a lin-
ar, space-variant mapping of the absorbed optical energy
rom points in the x−z object plane to hyperbolas in the x
r measurement plane �see Ref. 11, Sec. 2, for more details�.

Another approach that is more direct to solving Eq. �10� is
o seek a solution such that:

A��x,�� = g��x,�� � � R�x,�� , �11�

here we need to determine R�x ,��. This can be done using
he method outlined in Norton’s paper11 and is also derived in
ec. 6. The final result is:

A�x,z� = 2z�c
2� � g�x�,r�R1��c�z2 − r2 + �x − x��2	
drdx�,

�12�

here R1�u�=4 sinc�2u�−2 sinc2�u�, and �c is the cutoff fre-
uency that dictates the band-limit of the measured signals.

The preceding relation is an exact equation relating the
bsorbed optical energy in the medium to a filtered back-
rojection of time-integrated pressure signals.

In the case when z	�−1/2, this can be approximated as:
c

ournal of Biomedical Optics 044023-
A�x,z� = z�c
3/2� � g�x�,r�

r
R1���c��z2 + �x − x��2	1/2

− r
�drdx�. �13�

Defining G�x� ,r��g�x� ,r� /r*R1���cr	 and substituting in
Eq. �13� yields:

A�x,z� = z�c
3/2� G�x�,�z2 + �x − x��2	1/2
dx�. �14�

Equation �13� is similar to the filtered back-projection
�FBP� expression used for image reconstruction in computer
tomography �CT�. The function R1 is the same as the Fourier
transform of the truncated ramp filter used in the FBP
expression.14 Eq. �14� can be seen as back-projection of the
filtered function G. So this algorithm is equivalent to 1-D
filtration at each transducer position x� followed by back-
projection on circular arcs. Here, �c

−1/2 can be regarded as a
measure of the resolution of signal g�x ,r� in the temporal
direction since �c is the bandwidth of the function g��x ,��
with respect to the square of the temporal variable r. We
found that the exact Norton’s algorithm was extremely sensi-
tive to the choice of cutoff frequency and did not give us good
results. Hence, we implemented the approximate Eq. �13� as
the Norton-based algorithm.

So A�x ,z� can be obtained via the following steps in the
approximate Norton-based algorithm:

1. Convolve the 2-D time-integrated pressure signal g
with 1-D filter R1 with respect to the temporal variable r.

2. Map the result onto a circular grid for a given �x ,z�.
3. Sum the resulting expression over all the transducers.
4. Multiply the result by the distance from the transducer

axis, z, and other constant factors.

2.2 Fourier-Based Algorithm
This algorithm has been derived by Kostli and Beard4 and Xu
et al.5 It relates the Fourier transform of the absorbed optical
energy function to the Fourier transform of the measured op-
toacoustic pressures. The relation in 2-D is given by:4

Akx,kz = ��


c
�2

− kx
2�1/2� =

2c�
2 − c2kx
2�1/2



P�kx,
� ,

�15�

where

P�kx,
� =� � p�x,t�exp�− ikxx�cos�
t�dxdt , �16�

and 
=c�kx
2+kz

2�1/2. Note that our notation is different from
that in Ref. 4.

Here, A�x ,z� can be obtained via the following steps:
1. Take the real part Fourier transform of pressure, p�x , t�

with respect to time.
2. Take the Fourier transform of the result with respect to

x. This gives us P�kx ,
�.
3. Scale P�kx ,
� via Eq. �15� to obtain A�kx ,kz

= ��
 /c�2−k2	
.
x

July/August 2009 � Vol. 14�4�3
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4. Map A�k ,kz= ��
 /c�2−kx
2	1/2
 to a Cartesian grid via

nterpolation to obtain A�kx ,kz�. We employed bilinear inter-
olation. Note that only values for which kx

2� �
 /c�2 are used
n the mapping. Higher values would produce imaginary val-
es of kz. �Physically, they correspond to rapidly decaying
vanescent wave components.�

5. Inverse Fourier transform A�kx ,kz� to obtain A�x ,z�.

.3 Synthetic Aperture–Based Algorithm
his algorithm relates the signal intensity at each image point
�x ,z� to the sum of signals from the transducer at different
ositions delayed with the time it takes the signal to travel
rom the transducer position to the point.8

A�x,z� =� gx�,
��x − x��2 + z2	1/2

c
�dx�. �17�

o the step for obtaining A�x ,z� is.
• For each point �x ,z� in the source, sum over time-

ntegrated pressure samples corresponding to transducer posi-
ions x� at different times t such that ��x−x��2+z2	1/2=ct.

.4 Details of the Simulation
ll the simulations were performed using 128 transducer po-

itions spaced 0.1 mm apart and 128 time samples of width
7 ns. Time-integrated pressure data were simulated by inte-
rating the optoacoustic source over circles of radii ct, with
he transducer placed at the center of these circles. Simulated
-D pressure data were used for the Fourier-based algorithm,
hile time-integrated simulated pressure data were used for

he synthetic aperture and Norton-based algorithms. In order
o focus simply on the acquisition geometry and the inherent
ifferences between the algorithms, we did not simulate a
ow-pass or bandpass transducer response.

Simulated pressure data were generated for two different
hantoms—a circular phantom and a phantom consisting of a
ine of rectangles. An exact analytical expression was used to
enerate the time-integrated pressure data for the circular and
oint source phantoms A discrete numerical method was used
o generate the time-integrated pressure data for the line phan-
om. This method is based on an implementation of a varia-
ion of Siddon’s algorithm15 for computing the intersection
engths of an arc specified by the coordinates of a source and
eceiver with a pixel. The circular phantom was of radius
mm with its center placed at a distance of 2 mm from the

ransducer axis. The line of rectangles was placed at a dis-
ance of 2 mm from the transducer axis with each rectangle
eing 0.5 mm�0.3 mm wide. The images were constructed
n a 128�128 grid.

ig. 1 Circular phantom images: Fourier-based; Norton-based; syn-
hetic aperture.
ournal of Biomedical Optics 044023-
To study the resolution, simulated pressure data were gen-
erated for a point source of size 0.1 mm �same as pixel width�
placed at a distance of 1.0 mm from the transducer axis. A
zoomed-in image of a point source of was reconstructed using
the three algorithms with a zoom factor of 10. The images
were reconstructed on a 64�64 grid. We used these point
source images to compute a local impulse response �LIR�
function. The LIR is a generalization of the point-spread func-
tion applicable when the image acquisition and reconstruction
processes are not shift-invariant, as is the case here. We then
computed the 2-D Fourier transforms of the LIRs to obtain
what Barrett and Myers have called a local modulation trans-
fer function �LMTF�.12 A standard modulation transfer func-
tion �MTF� is the absolute value of the Fourier transform of
the system’s point-spread function and predicts the ratio of
output modulation to input modulation as a function of spatial
frequency. The localized modulation transfer function
�LMTF� is the generalization of MTF to linear, shift-variant
systems. Higher and broader LMTF indicates better resolution
properties.

Random Gaussian noise with mean 0 and a standard de-
viation of 1.0 was used for noisy pressure signals for the noise
studies. Noisy images were constructed on a 64�64 grid us-
ing a zoom factor of 10. The noise studies were performed for
500 realizations. LNPS is a generalization of the noise power
spectra �NPS� concept that can be used for linear systems
without the assumption of shift invariance that does not hold
for finite transducer aperture systems in OAT. LNPS was
computed by first generating a set of 500 realizations of re-
constructed images for each algorithm corresponding to pure
Gaussian noise pressure. For each set of these reconstructed
images, the mean image was computed. The mean image was
then subtracted from the other 500 images. LNPS was then
obtained by taking the average squared modulus of the Fou-
rier transform �FT� of the subtracted images:

LNPS =
1

N�
i=1

N

�FT�noisyImage�i� − meanImage	�2,

where N is the number of realizations.
LNEQ is defined as the ratio of the square of the LMTF to

the LNPS:

LNEQ =
�LMTF�2

LNPS
.

LNEQ is a kind of frequency-dependent signal-to-noise ratio
generalized to linear, shift-variant systems. Higher LNEQ im-
plies higher signal detectability performance for the so-called

Fig. 2 Images of a line of rectangles: Fourier-based; Norton-based;
synthetic aperture.
July/August 2009 � Vol. 14�4�4
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deal observer in the task when both signal and background
re known exactly.12

Results
.1 Phantom Images
n all the phantom images shown in this section, the trans-
ucer axis is along the bottom of the images. Figure 1 shows
on-zoomed-in images produced by the three algorithms for a
ircular phantom of radius 1 mm placed at a distance of
mm from the transducer axis. The image reconstructed via

he Fourier based algorithm has sharp edges, but it is nonuni-
orm and has lower contrast. The synthetic aperture image is
uite blurred. The image reconstructed via Norton’s approach
s quite sharp and fairly uniform. Note that we observe two
mages in the Fourier-based algorithm due to the implicit
ymmetry assumption in the reconstruction. Figure 2 shows
on-zoomed-in images of a line of small rectangles of size
.5 mm�0.3 mm placed at a distance of 2.0 mm from the
ransducer axis. The circular arc artifacts are more visible in
he synthetic aperture algorithm than the Norton-based algo-
ithm due to the additional filtration step that is performed in
he Norton-based algorithm. In addition, the rectangles them-
elves are much sharper and more filled-in in the Norton-
ased algorithm compared to the other two algorithms.

ig. 3 Zoomed-in point source images: Fourier-based; Norton-based;
ynthetic aperture.

Fig. 4 LIR plots: perpendicular to the tr
ournal of Biomedical Optics 044023-
3.2 Spatial Resolution

The images of zoomed-in point sources are shown in Fig. 3,
where the transducer axis is along the bottom of the images.
The LIR plots for the three algorithms are shown in Fig. 4.
These show that the Fourier-based algorithm shows the best
resolution perpendicular to the transducer array, while
Norton’s algorithm shows the best resolution parallel to the
transducer array. The main difference between Norton’s algo-
rithm and the SA algorithm is filtering. This results in a much
narrower LIR for Norton’s algorithm than for the SA algo-
rithm. In general, the lateral resolution for the Norton-based
and SA algorithms is much better than the depth resolution
�perpendicular to the transducer axis�. The full width at half
maxima �FWHM� results are shown in Table 1.

Figure 5 shows the LMTF images for the three algorithms.
The LMTF images exhibit an asymmetry due to the finite
transducer length. The reciprocal relationship between LIR
and LMTF is exhibited in these images. LMTF for SA algo-
rithm is the narrowest, since LIR for SA is the broadest. Fig-
ure 6 shows the LMTF plots. LMTF for the Fourier-based
algorithm is best in the direction perpendicular to the trans-
ducer axis, especially for smaller frequencies. Norton’s algo-
rithm produces the best LMTF profile in the lateral direction,
which is expected since it had the smallest lateral resolution.

er axis; parallel to the transducer axis.

Table 1 FWHM values for a point source of size 0.1 mm with pixel
width=0.1 mm.

FWHM Fourier-based Norton-based Synthetic aperture

Depth �mm� 0.154 0.200 0.471

Lateral �mm� 0.161 0.151 0.189
ansduc
July/August 2009 � Vol. 14�4�5
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.3 Noise Texture
he noise texture images are simply images of a uniform
ackground reconstructed from pressure signals to which
ero-mean Gaussian noise has been added. Figure 7 shows the
oise texture in the unzoomed images reconstructed via the
hree algorithms. The noise in the Fourier-and Norton-based
lgorithms seems uniformly speckled, while the smeared out
oise texture in the SA algorithm seems to exhibit some long-
ange correlations. Such “blobbiness” in the noise can impede
etectability of signals of size comparable to the blob size.
NPS describes the frequency content of the background tex-

ure in the region surrounding the location of the signal in the
mage.12 Figure 8 shows the zoomed-in �250%� images of
NPS for the three algorithms. LNPS images for the Norton-
ased and synthetic aperture algorithms are fairly symmetric.
ut this is not the case for the Fourier-based algorithm. Note

hat the input to the Fourier-based algorithm was Gaussian
oise pressure, while the input to the other two algorithms
as time-integrated Gaussian noise pressure, which intro-
uces noise correlations that can affect the form of the LNPS.
igure 9 shows the LNPS plots in the two directions. The plot
or the SA algorithm was omitted because it was several or-
ers of magnitude higher than the other two algorithms and

ig. 5 Zoomed-in LMTF images �250%�: Fourier-based; Norton-
ased; synthetic aperture.

Fig. 6 LMTF plots: perpendicular to the
ournal of Biomedical Optics 044023-
could not be fit into the same plot. The shapes for LNPS are
very different for the Norton-based and Fourier-based algo-
rithms.

3.4 Signal Detectability/LNEQ
Figure 10 shows the zoomed-in �250%� images of LNEQ for
the three algorithms. Figure 11 shows the LNEQ plots. In
general, LNEQ images are somewhat difficult to interpret vi-
sually, as they represent a kind of generalized frequency–
domain detectability transfer function, but bright areas corre-
spond to frequency components that are more likely to be
detected against a background of correlated noise, as captured
by the LNPS. To calculate the so-called ideal observer signal-
to-noise ratio for a small low-contrast signal, one would cal-
culate the squared magnitude of the Fourier transform of the
signal, multiply it by the LNEQ shown in the images, and
integrate over all frequencies. The plots in Fig. 11 give a
better sense of the relative magnitude of the LNEQ for the
different algorithms. Higher values are better, and the Norton-
based algorithm produces the highest LNEQ in both direc-
tions followed by the Fourier-based algorithm. This indicates
superior ideal observer signal detectability in images recon-
structed by the use of the Norton-based algorithm. For all

cer axis; parallel to the transducer axis.

Fig. 7 Noisy images: Fourier-based;Norton-based; synthetic aperture.
transdu
July/August 2009 � Vol. 14�4�6
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lgorithms, the LNEQ becomes small at 5 mm−1 in the depth
irection and 7 mm−1 in the lateral direction.

Discussion
he 2-D geometry that we consider in this paper reduces the

nherently 3-D optoacoustic image reconstruction to 2-D due
o transducer’s 2-D directivity. This results in the measured
-D optoacoustic signal being related to the time derivative of
he integral of the absorbed optical energy over circular arcs
entered at the transducer as given by Eq. �3�. The three al-
orithms considered here for evaluation have some intrinsic
ifferences. The SA algorithm is approximate to start with and
nvolves only the delay and sum technique based on back-
rojection over circular arcs. The Norton-based algorithm im-
roves on the SA algorithm by providing a filtration step that
lters the time-integrated pressure data before using the back-
rojection over circular arcs technique. The Fourier-based al-
orithm is not exact in the 2-D geometry that we are consid-
ring since it assumes that the optoacoustic source is constant
n the third dimension. These intrinsic differences in the algo-
ithms explain the differences in sharpness and quality of the
econstructed images.

Norton-based and SA algorithms use time-integrated pres-
ure as input signal, while the Fourier-based algorithm uses
ressure signal as input. Integration of noisy data introduces

ig. 8 Zoomed-in LNPS images �250%�: Fourier-based; Norton-based;
ynthetic aperture.

Fig. 9 LNPS plots: perpendicular to the
ournal of Biomedical Optics 044023-
noise correlations that can affect the LNPS. This was reflected
in the blobbiness of the noise texture images of the SA algo-
rithm. The additional filtration step in the Norton-based algo-
rithm aids in the removal of such blobbiness and gives a much
better noise texture. The Fourier-based algorithm does not
show such blobbiness in noise texture.

5 Conclusions

We explored three different ways in which a 2-D image can
be reconstructed in OAT. We implemented and evaluated
three algorithms for 2-D image reconstruction in OAT
Fourier-based, Norton-based, and synthetic aperture algo-
rithms. We found that the 2-D Fourier-based algorithm offers
better resolution and LMTF in the depth direction, while
Norton’s algorithm offers the best lateral resolution. However,
we found that in reconstructions of phantoms, the images pro-
duced by the Norton-based algorithm looked the sharpest and
most uniform. The LNEQ data suggests that the Norton-based
algorithm has the best signal detectability.

cer axis; parallel to the transducer axis.

Fig. 10 LNEQ images: Fourier-based; Norton-based; synthetic
aperture.
transdu
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ppendix

2-D Relationship between Pressure and
Absorbed Optical Energy Function

tarting with Eq. �2�,

p�r,t� = �� d3r�A�r��
�

�t

��t −
�r − r��

c
�

4��r − r��
,

=
�c

4�

�

�t
�

�r=ct�

A�r��
ct

dS�, �18�

here r= �r−r��, dS� is the differential surface area, and the
ntegral is over a spherical surface centered on r and of radius
r. This can be written as:

p�r,t� =
�c

4�

�

�t
�

�r�=ct

�ct�2A�r��
ct

d��,

here d��=sin ��d��d�� is the solid angle. This equation in
-D �x−z plane� reduces to:

p�x,z,t� =
�c

4�

�

�t
�

��−���=ct

�ct�A����d��, �19�

here �= �x2+z2�1/2 is the polar radial coordinate.
Using the integral property of delta functions, this can be

ritten in polar coordinates as:

Fig. 11 LNEQ plots: perpendicular to the
ournal of Biomedical Optics 044023-
p�x,z,t� =
�c

4�

�

�t
� �

��−���=ct

�� − ���d��� − ������ct − ��

− ����A����d��. �20�

This can be written equivalently in 2-D Cartesian coordi-
nates as:

p�x,z,t� =
�c

4�

�

�t
� � dx�dz�A�x�,z����ct − ��x − x��2

+ z�2	1/2
 .

2 Derivation of Norton-Based Algorithm
In this section, we shall derive Eq. �12� following the method
detailed in Norton’s paper.11 Define the Fourier transform with
respect to r as:

f̃�x,�� =� f�x,r�exp�i2��r�dr . �21�

Taking the Fourier transform of Eq. �10� on both sides with
respect to �=r2, we get

g̃��x,�� = Ã��x,�� � exp�i2�x2�� . �22�

On convolving both sides with exp�−i2�x2��, we get

g̃��x,�� � exp�− i2�x2�� = Ã��x,�� � exp�i2�x2�� � exp�

− i2�x2�� , �23�

where the convolution is with respect to x. Using the identity

ucer axis; parallel to the transducer axis.
transd
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exp�i2�x2�� � exp�− i2�x2�� = ��2�x� ,

=����x�
2���

+
����
2�x� �� ,

quation �23� becomes

g̃��x,�� � exp�− i2�x2�� = Ã��x,�� � ���x�
2���

+
����
2�x� �

=
1

2���
Ã��x,�� +

1

2
����

��Ã��x,�� �
1

�x�� . �24�

olving for Ã��x ,�� gives

Ã��x,�� = 2���g̃��x,�� � exp�− i2�x2�� − �������

��A��x,�� �
1

�x�� ,

sing the identity �������=0 to eliminate the second term on
he right and taking the inverse Fourier transform �FT−1� with
espect to � on both sides, one finds

A��x,�� = g��x,�� � � FT−1�2���exp�− i2�x2��	�. �25�

Comparing Eq. �25� with Eq. �11�, we see that

R�x,�� = FT−1�2���exp�− i2�x2��	�,

=2FT−1����	�+x2. �26�

f the data g��x ,�� is band-limited by a cutoff frequency �c,
hen the preceeding convolution relation is unchanged if we
mpose the same band-limit on R�x ,��. So one gets:

R�x,�� = 2FT−1����rect� �

2�c
��

�+x2
. �27�

ne can write out the convolution in Eq. �25� as

A��x,�� = �c
2� � g��x�,��R1��c�� − � + �x − x��2	
d�dx�,

here R1�u�=4 sinc�2u�−2 sinc2�u�.
Substituting for A��x ,��, g��x ,�� and for � and �, one

btains
ournal of Biomedical Optics 044023-
A�x,z� = 2��c
2� � g�x�,r�R1��c�z2 − r2 + �x − x��2	
drdx�,

which is the desired result.
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