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Abstract. The performance of near-infrared spectroscopy is some-
times degraded by the systemic physiological interference in the ex-
tracerebral layer. There is some systemic interference, which is highly
correlated with the functional response evoked by a task execution.
This kind of interference is difficult to remove by using ordinary tech-
niques. A multidistance measurement method is one of the possible
solutions for this problem. The multidistance measurement method
requires estimation parameters derived from partial pathlength values
of tissue layers to calculate an absorption coefficient change from a
temporal absorbance change. Because partial path lengths are difficult
to obtain, experimentally, we estimated them by a Monte Carlo simu-
lation based on a five-layered slab model of a human adult head.
Model parameters such as thickness and the transport scattering coef-
ficient of each layer depend on a subject and a measurement position;
thus, we assumed that these parameters obey normal distributions
around standard parameter values. We determined the estimation pa-
rameters that provide a good separation performance in average for
the model parameter distribution. The obtained weighting is robust to
model parameter deviation and provides smaller errors on average
compared to the parameters, which are determined without consider-
ing parameter distribution. © 2009 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.3275466�

Keywords: near-infrared spectroscopy; multidistance measurement; interference
cancellation; Monte Carlo simulation.
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Introduction

ear-infrared spectroscopy �NIRS� has several advantages
ompared to other functional measurement methods, such as
unctional magnetic resonance imaging �fMRI�, positron
mission tomography, and electroencephalography �EEG�.
he advantages include good temporal resolution and mea-
urement of both oxygenated �HbO2� and deoxygenated
HbR� hemoglobin, portability, low restraints of subjects, and
ow cost of the measurement equipment. The disadvantages
re low spatial resolution and potentially unstable measure-
ent because of the instability of an optical probe contact that
ight be induced by body motion and hair absorption. The

ystemic physiological interference is an another difficult
roblem in NIRS measurement.

The well-known systemic physiological interference is
aused by heart beat and respiration. The suppression of this
ind of systemic interference is relatively easy because the
orrelation between the interference and the functional re-
ponse of brain functional activity is usually low. For ex-

ddress all correspondence to: Shinji Umeyama, Neuroscience Research Insti-
ute, National Institute of Advanced Industrial Science and Technology, AIST
sukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. Tel: 81-
9-861-5837; Fax: +81-29-861-5841; E-mail: s.umeyama@aist.go.jp
ournal of Biomedical Optics 064025-
ample, systemic interference caused by heart beat can be ef-
fectively removed using a low pass filtering technique.
However, low pass filtering may not be appropriate for respi-
ration because the frequency spectra of respiration and func-
tional activity may overlap each other. Even in this case, it
can be suppressed by using the low correlation property be-
tween the interference �respiration� and brain functional activ-
ity. Zhang et al. solved this problem by using an adaptive
filtering technique.1,2 Saager and Berger applied the least-
squares fit technique to this problem, and gave a detailed
analysis of its performance.3 Both methods are based on the
multidistance measurement and have an advantage that they
can remove not only the interference in the superficial layer
�scalp and skull layers�, but also the interference included in
the cerebral layer, as far as the interference is low correlated
with the brain functional signal.

There is an another form of interference, which is observed
synchronously with the heart rate increase during execution of
a task �for example, finger opposition task�.4,5 This kind of
interference is highly correlated with the functional response
itself. Thus, it is difficult to remove it by the methods using

1083-3668/2009/14�6�/064025/10/$25.00 © 2009 SPIE
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he low correlation property between them. We consider the
emoval of this kind of interference in this paper.

Two approaches have been proposed to isolate and elimi-
ate this kind of interference. The first approach is to use the
patial locality difference between the brain functional activ-
ty and the systemic interference. It is well known through
MRI studies that the brain functional activity is highly local-
zed. Conversely, systemic interference is generally global.
hus, this difference can be used to differentiate them. Pio-
eering work of this approach was reported by Franceschini et
l.4 They assumed that the NIRS signal measured at an area
here no functional activity is expected should be similar to

he systemic interference, and isolated the functional response
f the activated region by subtracting this signal from the
easured signal. This approach was refined as a method that

ses principal component analysis.5,6 A similar approach
ased on independent component analysis instead of PCA has
lso been proposed.7 This approach has an advantage in that a
onventional continuous-wave NIRS system is available, and
he method is easy to implement. However, it has a tendency
o decrease the amplitude of the functional response in the
ctivated regions and to propagate noise from noisy channels
o all other channels.5 Another disadvantage is that it requires

large-scale NIRS system equipping many measurement
hannels because it is based on the spatial uniformity of the
ystemic interference.

The second approach relies on the multidistance measure-
ent. If we assume a multi layered slab model as a human

dult head, the temporal absorbance change can be approxi-
ated as a linear sum of the products of a partial pathlength

nd an absorption coefficient change of each layer.8,9 Because
he partial pathlength depends on the distance between a light
ource and a detector, absorption coefficient change at each
ayer can be computed easily if several detectors with differ-
nt source-detector separations are used and partial pathlength
arameters of each source-detector pair are known.8,10 Thus, if
uch an interference occurs mainly in the superficial layer,
ultidistance measurement method can separate it from the

unctional response.
The problem with the second approach is that it is very

ifficult to determine, experimentally, the partial pathlength of
ach layer. Fabbri et al.10 pointed out that the ratio of the
artial pathlength of the superficial layer at different detectors
an be calculated as the ratio of the absorbance changes, if the
emoglobin changes in the cerebral layer are negligible. This
pproach is effective. However, requirement of static hemo-
ynamics in the cerebral layer may be a strong constraint in
ome situations.

A partial pathlength of each layer can be predicted compu-
ationally by Monte Carlo simulation. Monte Carlo simulation
equires a lot of physiological parameters of a head model,
uch as the thickness and transport scattering coefficient of
ach tissue. Tissue thickness can be measured by MRI, how-
ver, doing so may spoil the advantages of low restraint of
ubjects and low cost provided by NIRS. For example, al-
hough NIRS offers advantages for brain functional measure-

ent of infants and children because of its low restraint prop-
rty, its applicability would be limited if MRI measurement is
equired. The transport scattering coefficient of each layer is
uch more difficult to measure.
ournal of Biomedical Optics 064025-
Leung et al.11 have provided a theoretical analysis of the
second approach by the finite element method of the diffusion
equation based on assumed standard physiological param-
eters. They showed how exactly the hemoglobin change at
gray matter can be estimated using this approach and gave the
optimum detector arrangement. In this paper, deviations of
blood volume, oxygen saturation, and thickness of a superfi-
cial layer are considered, and a range of data were simulated
corresponding to different thicknesses and physiological con-
ditions of each layer. The optimum regression parameters for
brain hemodynamic change estimation were calculated di-
rectly from the simulated data without using the modified
Beer-Lambert law. They used the partial least-squares method
to obtain these parameters. In their paper, however, only the
thickness parameter of a superficial layer was considered as a
deviation, and the transport scattering parameter of all layers
and thickness parameter of the other layers were not consid-
ered.

Here, we analyzed the multidistance measurement method
to separate the brain functional response from the systemic
interference in a superficial layer caused by task execution.
Other interferences, evoked by heart beat, respiration, etc.,
were assumed to be removed beforehand by preprocessing.
We used the modified Beer-Lambert law, and partial optical
path lengths were estimated by Monte Carlo simulation. We
supposed a population of subjects and assumed that physi-
ological parameters, the transport scattering parameters, and
thicknesses of layers of each subject were distributed around
the assumed standard values. An estimation method giving a
good average separation performance for the population was
derived by multilinear regression.

2 Theory
Our study used two light detectors �d1 and d2� and two wave-
lengths ��1 and �2� of light. A five-layer slab model consisting
of scalp, skull, cerebrospinal fluid �CSF�, gray matter, and
white matter was used as a human adult head model.

2.1 NIRS Observation Model Based on Partial
Pathlength

The temporal absorbance change at the detector di �i=1,2� of
wavelength � j �j=1,2� is represented as follows:8,9

�Adi,� j
= ldi,� j

sc ��a,� j

sc + ldi,� j

sk ��a,�j

sk + ldi,� j

csf ��a,� j

csf + ldi,� j

gm ��a,� j

gm

+ ldi,� j

wm ��a,� j

wm , �1�

where ldi,�j

sc , ldi,�j

sk , ldi,�j

csf , ldi,�j

gm , and ldi,�j

wm are partial path lengths

of scalp, skull, CSF, gray matter, and white matter, respec-
tively, and ��a,�j

sc , ��a,�j

sk , ��a,�j

csf , ��a,�j

gm , and ��a,�j

wm are ab-

sorption coefficient changes of each layer. We assume that
absorption coefficient change in CSF is relatively small
���a,�j

csf �0� because the concentrations of HbO2 and HbR are
small there. We also assume ldi,�j

wm �0 because the result of
Monte Carlo simulation shows that the partial path length of
white matter is very small. Finally, we assume that absorption
coefficient changes in scalp and skull are similar ���a,�j

sc

���sk �. Equation �1� thus becomes
a,�j

November/December 2009 � Vol. 14�6�2
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�Adi,� j
= ldi,� j

sp ��a,� j

sp + ldi,� j

gm ��a,�j

gm , �2�

here ldi,�j

sp and ��a,�j

sp are partial pathlength and absorption
oefficient change, respectively, in superficial layer �scalp and
kull�

ldi,� j

sp = ldi,� j

sc + ldi,� j

sk , �3�

��a,� j

sp = ��a,� j

sc = ��a,�j

sk . �4�

f we give a vector representation of the temporal absorbance
hange and absorption coefficient change, then we have

a = ��Ad1,�1
,�Ad2,�1

,�Ad1,�2
,�Ad2,�2

�T, �5�

� = ���a,�1

sp ,��a,�1

gm ,��a,�2

sp ,��a,�2

gm �T. �6�

quation �2� is summarized as follows:

a = L� , �7�

here

L =�
ld1,�1

sp ld1,�1

gm 0 0

ld2,�1

sp ld2,�1

gm 0 0

0 0 ld1,�2

sp ld1,�2

gm

0 0 ld2,�2

sp ld2,�2

gm
� . �8�

e call L a partial pathlength matrix.
Next we give a vector representation of HbO2 and HbR

oncentration change in superficial and gray matter layers

x = ��HbO2
sp,�HbO2

gm,�HbRsp,�HbRgm�T. �9�

emoglobin concentration change x and absorption coeffi-
ient change � have the following relationship:

� = Ex . �10�

is a molar absorption coefficient matrix of HbO2 and HbR

E =�
�HbO2,�1

0 �HbR,�1
0

0 �HbO2,�1
0 �HbR,�1

�HbO2,�2
0 �HbR,�2

0

0 �HbO2,�2
0 �HbR,�2

� . �11�

rom Eqs. �7� and �10�, we derive the following.

a = LEx . �12�

.2 Optimizing the Estimation of �HbO2 and
�HbR

emoglobin concentration change can be estimated from the
easured temporal absorbance change a and Eq. �12� if we

now E and L. E can be obtained from prior studies.12 How-
ver, partial pathlength matrix L is determined by physiologi-
al parameter values, which depend on a subject and a mea-
urement position, and it is difficult to obtain experimentally.
ournal of Biomedical Optics 064025-
We describe in this paper a separation method that provides a
good average separation performance for a variety of subjects
and measurement positions.

The various partial pathlength matrices are written as L
= �L1,L2 , . . . ,LK� corresponding to a variety of subjects and
measurement positions. L indicates that various values of the
temporal absorbance change ak=LkEx are observed even if
the hemoglobin concentration change x is fixed. We introduce
an inverse transformation matrix E−1W, which estimates he-
moglobin concentration change from temporal absorbance
change values. W estimates absorption coefficient change
from the temporal absorbance change, and E−1 transforms ab-
sorption coefficient change to hemoglobin concentration
change. Here we assume that the absorption coefficient
changes of two wavelengths are estimated independently.
Thus, W=diag�W1 ,W2�, where W1 and W2 are estimation
matrices for �1 and �2, respectively. Because W includes co-
efficients to estimate absorption coefficient changes, we call
W a measurement weighting.

When we use a measurement weighting W, the hemoglo-
bin concentration change when L=Lk is estimated as follows:

x̂k�t� = E−1Wak�t� , �13�

=E−1WLkEx�t� . �14�

The estimation error is

x̂k�t� − x�t� = �E−1WLkE − I�x�t� . �15�

If we assume a model time course of hemodynamic change,
then mean-squared error of estimated hemoglobin changes is
given as follows:

Jk =
1

T
�

0

T

	x̂k�t� − x�t�
T	x̂k�t� − x�t�
dt , �16�

=
1

T
�

0

T

x�t�T�E−1WLkE − I�T�E−1WLkE − I�x�t�dt , �17�

=tr��E−1WLkE − I�T�E−1WLkE − I��x� , �18�

where

�x =
1

T
�

0

T

x�t�xT�t�dt . �19�

Jk is a mean-squared error of estimated hemoglobin changes
when the partial path-length matrix is Lk. Thus, the mean-
squared error on average for all partial path-length matrices in
L is given as follows:

J =
1

K�
k=1

K

Jk. �20�

The optimum weighting W=diag�W1 ,W2� to minimize J
and its derivation detail is given in the Appendix. The opti-
mum weighting 	Eq. �43�
 gives a good average separation
performance for a partial path-length matrix distribution L on
November/December 2009 � Vol. 14�6�3
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verage. Thus, if we apply this weighting to the multidistance
easurement data, it is expected to give a better separation

erformance than the weighting determined without consider-
ng a parameter distribution. This will be illustrated later in
ig. 5.

.3 Random Generation of Partial Path-length
Matrices

ecause a partial path-length matrix L is a block diagonal
atrix, we write L=diag��1 ,�2�. � j corresponds to a mea-

urement of � j light. The value of a partial path-length de-
ends on the thickness and transport scattering coefficient of
ach layer of a head. Thus, we use � j�u j� to emphasize this.
he set of parameters u j are as follows:

u j = �u1
j ,u2

j ,u3
j ,u4

j ,u5
j ,u6

j ,u7
j ,u8

j ,u9
j �T �21�

=��s,� j
�sc ,�s,�j

�sk ,�s,� j
�csf,�s,�j

�gm,�s,�j
�wm,tsc,tsk,tcsf,tgm�T. �22�

he thickness of white matter is not included in u j because
ur Monte Carlo simulation shows that few photons can reach
hite matter. The value of a partial pathlength also depends
n the baseline concentrations of HbO2 and HbR; however,
e assume here that the baseline concentration is fixed at its

tandard value to simplify the analysis.
A set of partial path-length matrices can be obtained if we

xecute a Monte Carlo simulation based on various multilay-
red model parameters. This simulation, however, requires
ignificant computation time; thus, execution of many sets of
arameters is difficult. Instead, we assumed that � j�u0

j

�u j� can be approximated in a linear form if �u j is small

� j�u0
j + �u j� = � j�u0

j � + �
m=1

9 � �� j

�um
�

u0
j
�um

j . �23�

Many partial path-length matrices can be generated based
n Eq. �23�. The first-order coefficients of Eq. �23� indicate
ow much the partial path length changes when thicknesses
nd transport scattering coefficients of layers change; we term
his the sensitivity coefficient of the partial pathlength. The
pproximate value of the sensitivity coefficient can be ob-

Table 1 Hemodynamic parameters, thickness,
model.

Tissue type

Baseline
concentration

Thick
�m

HbO2
�mM�

HbR
�mM�

Scalp 0.064 0.027 3

Skull 0.057 0.024 7

CSF 0.014 0.006 2

Gray matter 0.128 0.055 4

White matter 0.050 0.021 3
ournal of Biomedical Optics 064025-
tained if we investigate the partial pathlength change pro-
duced by a small increase in the parameter value um through
simulations.

We computed the partial-pathlength and sensitivity coeffi-
cient of standard parameters um,0

j by Monte Carlo simulation.
We assumed that a parameter um

j is a random variable and
obeys a normal distribution N�um,0

j ,�m
j �. If we determine a

parameter value um
j by random sampling of N�um,0

j ,�m
j �, then

many partial pathlength matrices can be generated by Eq.
�23�.

3 Method
3.1 Monte Carlo Simulation
The partial path-length and sensitivity coefficient based on
standard parameter values were computed by a Monte Carlo
simulation. The simulation program, tMCimg, provided in
public by the Photon Migration Imaging Laboratory at Mas-
sachusetts General Hospital was used. A five-layer model of
an adult head consisting of scalp, skull, CSF, gray matter, and
white matter was used �Fig. 1�. The size of simulated tissues
was 100�100�50 mm. The wavelengths of the light source
were 800 and 840 nm. The source-detector separation was
assumed from 10 to 40 mm every 5 mm.

The standard parameters used in the simulation are given
in Table 1. Thickness and optical properties ��a and �s�� for

� � � � � � ��
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�����

�����

���

���� ������

����� ������

� � 
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� � ���

� � ���

� � 
���

���� 

!��� 
�	

Fig. 1 Geometry of a five-layer adult head model for Monte Carlo
simulation.

tical properties for each layer of an adult head

Absorption
coefficient �a

800 nm/840 nm
�mm−1�

Transport scattering
coefficient �s�

800 nm/840 nm
�mm−1�

0.018/0.021 1.90/1.81

0.016/0.019 1.60/1.52

0.004/0.005 0.24/0.23

0.036/0.042 2.20/2.09

0.014/0.017 9.10/8.65
and op

ness
m�

4
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ear-infrared light of 800 nm for each layer were chosen from
eported data.13 HbO2 and HbR concentrations were calcu-
ated from the absorption coefficients at 800 nm with the as-
umption that oxygen saturation is 70%. The absorption coef-
cient calculated from water absorption coefficients given in

he paper14 was also used in this case.15 These values were
sed to calculate the absorption coefficients at 840 nm. Be-
ause it is known that the transport scattering coefficient de-
reases if the wavelength of infrared light increases,11,16 trans-
ort scattering coefficients at 840 nm were set to be 95% of
hose at 800 nm.

.2 Model Time Course of Hemodynamic Change
t is very difficult to know real values x
��HbOsp,�HbO2

gm,�HbRsp,�HbRgm�T in superficial and
ray-matter layers. Thus, we use a simple model of hemody-
amic change time course. In this model, �HbO2

gm and
HbRgm are functional responses of the executed task, and
HbOsp and �HbRsp are systemic interference correlated
ith the task execution.

The hemodynamic responses in both layers were defined
s the convolution of the stimulation s�t�, 	s�t�=0 for rest
eriod, and 1 for stimulation
 and a prototypical hemody-
amic impulse response h�t�,1,17 in our model

s�t� = 1 if t � rest

0 if t � stimulation
� , �24�

h�t� = tb exp�−
b

D
t� . �25�

he parameters b and D in the definition of h�t� determine the
idth and the delay time to the peak point of the impulse

esponse, respectively. The delay time to the peak point for
oth �HbOgm and �HbRgm in the gray-matter layer were set
=5 s, and these parameters for the superficial layer were set
=3 s for both �HbOsp and �HbRsp because the recent

ndings18 show that �HbOgm and �HbRgm have a similar
ime course with a very little delay and that the functional
esponse is slower than the systemic response. The parameter
oncerning the impulse response width was set at b=8 for all
esponses. Figure 2�a� shows the stimulation s�t� �0	 t

40�, and Fig. 2�b� shows the hemodynamic impulse re-
ponse of each layer. The peak values of all responses are
ormalized to be unity.

The evoked hemodynamic response x�t� was the convolu-
ion of s�t� and h�t�

x�t� = C	h�t� � s�t�
 , �26�

here C is a scaling parameter. Figure 2�c� shows the simu-
ated evoked hemodynamic response of each layer. Peak val-
es of �HbOgm and �HbRgm were set to be 0.017 and
0.005 mM, respectively. These values were about 13% and
% of the assumed baseline conditions.19 On the other hand,
eak values of the superficial layer were set to be 1 /10 of the
ray-matter layer based on the following findings: The tem-
oral absorbance changes of the systemic interference of a
nger-tapping task and functional response of brain functional
ctivity are considered to be comparable4 and Monte Carlo
ournal of Biomedical Optics 064025-
simulation shows that the partial path length of a superficial
layer is more than 10 times longer than that of a gray-matter
layer. Thus, we assumed that hemoglobin concentration
changes of a superficial layer are 1 /10 of those of gray-matter
layer.

The covariance matrix �x 	Eq. �19�
 was calculated based
on these simulated hemodynamic responses and used for the
optimization process.

4 Results and Discussion
4.1 Partial Path Length and Its Sensitivity Coefficient
We computed partial path lengths of superficial and gray-
matter layers at various source-detector separations by Monte
Carlo simulation �Fig. 3�. Solid lines and dashed lines in Fig.
3 correspond to the light sources of wavelengths �1 and �2,
respectively. Figure 3 shows that partial path lengths of dif-
ferent wavelength have similar values, especially for gray
matter. It also shows that the partial path length of the super-
ficial layer is more than 10 times greater than that of gray
matter. This difference is pronounced when the source-
detector separation is small, which means that blood flow
change in a superficial layer may have a strong influence on
the measurement.

Figure 4 shows relative �percent� change of partial path-
length of gray-matter and superficial layers, that is, the ratio
of partial path-length change to its baseline value, where
model parameters were increased by 10% from the standard
values. We showed these values instead of sensitivity coeffi-
cients because they may be more comprehensible. Figure 4
indicates that the thickness parameter of scalp and skull layers

0 5 10 15 20 25 30 35 40
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Time (sec)
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0 5 10 15 20 25 30 35 40
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Fig. 2 Model time course of hemodynamic change: �a� Stimulation
paradigm, �b� normalized hemodynamic impulse response, and �c�
evoked hemodynamic change.
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has a significant influence on the partial path length of the
gray-matter and superficial layers. The transport scattering co-
efficient of the skull layer has also a comparable influence on
the partial pathlength of the gray-matter layer. On the other
hand, partial path lengths of both layers are insensitive to all
other parameters.

The validity of the first-order approximation of the partial
path-length matrix 	Eq. �23�
 was checked by another Monte
Carlo simulation. The simulation result �data not shown�
shows Eq. �23� holds approximately in the range of 
30% of
the transport scattering coefficient change and 
1 mm of the
layer thickness change.

4.2 Optimum Weighting and Its Performance
To obtain a measurement weighting that provides a good av-
erage performance for the subject population, we generated a
set L of partial path-length matrices based on its linear ap-
proximation model 	Eq. �23�
 and the assumption that model
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arameters are distributed normally around the standard pa-
ameter values. The source-detector separations of two detec-
ors were set to be 20 and 30 mm. The optimum weighting

opt for L was derived by Eq. �43�. Standard deviations of
ormal distributions of model parameters were set to be 10,
0, and 30% of standard parameter values shown in Table 1.
wo thousand partial path-length matrices were randomly
enerated for each case, and half of them were used as train-
ng data to compute Wopt and the other half as test data to
valuate the performance of the obtained Wopt.

When we use a simulated evoked hemodynamic response
f Fig. 2, the mean-squared error �MSE� of �HbOgm and
HbRgm estimated by two measurement weightings, Wopt and

std
−1 are shown in Figs. 5�a� and 5�b�. Wopt is the optimum
eighting obtained by the training data, and its MSEs are

10% 20% 30%
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

M
ea
n
sq
ua

re
d
er
ro
r

SD of model parameter distribution

MSE of estimated ∆ HbO gm

W
opt

L
std
−1

10% 20% 30%
0

0.5

1

1.5
x 10

−4

M
ea
n
sq
ua

re
d
er
ro
r

SD of model parameter distribution

MSE of estimated ∆ HbO gm

W
opt

L
std
−1

���

���

ig. 5 Mean-squared errors of �HbOgm and �HbRgm estimated by
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nd �d� MSEs of �HbRgm, and �a� and �b� standard artifact case. Chan
nd �d� Large artifact case. Changes in the superficial layer is 1/5 of
ournal of Biomedical Optics 064025-
shown by filled bars. Lstd
−1 is the inverse of the standard partial

path-length matrix Lstd, where Lstd is a partial path-length ma-
trix determined by the standard model parameters. This means
that Lstd

−1 is a weighting not to consider the model parameter
distribution. Its MSEs are shown by unfilled bars. Figures 5�a�
and 5�b� show that MSE of both �HbOgm and �HbRgm in-
creases almost linearly when deviations of model parameters
increases. It also shows that MSEs of the optimum weighting
are much less than those obtained by Lstd

−1, especially when the
deviation of model parameter distribution is large. Thus, the
proposed optimization method is effective to minimize the
estimation errors on average.

Figures 5�c� and 5�d� show MSEs of the case where the
hemoglobin changes in the superficial layer is larger than the
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ase of Fig. 2. In this case, the peak values of �HbOsp and
HbRsp were set 1 /5th of the gray matter layer values. Fig-
res 5�c� and 5�d� show that MSEs of the optimum weighting
lightly increase in this case; however, MSEs of Lstd

−1 are sig-
ificantly larger than the small artifact case �Fig. 2 case�. This
esult shows that the optimum weighting can give a better and
obust estimation of brain hemodynamic response on average.

Figure 6 shows how much the estimated hemoglobin
hanges deviate from the assumed original changes �Fig. 2�
hen model parameter changes. The standard deviation of
odel parameter distribution was assumed to be 20% of the

tandard values. Ten partial path-length matrices were ran-
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istribution was assumed to be 20% of the standard values. The estim
olid lines. The assumed original hemoglobin changes are also shown
ournal of Biomedical Optics 064025-
domly selected from the generated test data, and two measure-
ment weightings �Wopt and Lstd

−1� were used to estimate the
hemoglobin changes based on Eq. �14�. The estimated hemo-
globin changes are light red �HbO� and blue �HbR� solid
lines. The assumed original hemoglobin changes are also
shown in the figures by thick solid lines. The estimation result
by Wopt and Lstd

−1 are shown in Figs. 6�a� and 6�b�, respec-
tively, which show that the estimated changes by Lstd

−1 vary
widely compared to those by Wopt.

Figure 6�c� is the estimation result where we applied an
ordinary single-detector NIRS algorithm to the test data under
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he same conditions. The source-detector separation was set to
e 30 mm in this case. The sum of the partial path lengths of
ll layers was considered as the total path length in this case.
he obtained hemoglobin changes were significantly smaller

han the original changes because the total path length used in
he algorithm is longer than the partial path length of the
ray-matter layer. This is called partial volume effect.20

Next, we normalized the scale of each response in Figs.
�a�–6�c� by making its value at t=15 s, 1 for HbO and −1
or HbR, to analyze the response shapes without being af-
ected by their scale variation. The original changes were also
ormalized in this way. The results are shown in Figs.
�d�–6�f�. Figures 6�d� and 6�e� show that the shapes of the
esponses estimated by multidistance measurement are close
o the original hemoglobin changes in the gray-matter layer,
lthough the rising and decaying phases of the response are
istorted. These distortions are considered to be caused by
ross talk.15,20 On the other hand, the shapes estimated by an
rdinary single-detector NIRS algorithm 	Fig. 6�f�
 are differ-
nt from the original changes in gray-matter layer but close to
hose in the superficial layer. These results show that the mul-
idistance measurement is effective to extract the correct he-

oglobin changes in the gray-matter layer.

Conclusion
he multidistance measurement method can separate the

unctional response of brain activity from the systemic physi-
logical interference caused by task execution. However, be-
ause measurement weighting is difficult to determine experi-
entally, we estimated it by a Monte Carlo simulation. A
ve-layered slab model was used to represent a human adult
ead. Because model parameters such as the thickness and
ransport scattering coefficient depend on a subject and a mea-
urement position and are difficult to measure, we assumed
hat model parameters obey normal distributions around stan-
ard parameter values. The measurement weighting that pro-
uces a good average separation performance for the model
arameter distribution was determined.

Partial path lengths of superficial and gray-matter layers
ere computed based on standard parameters by a Monte
arlo simulation, and their sensitivity coefficients, which in-
icate how much the partial path length changes when model
arameter changes, were also given. The results indicate that
he partial path length of the superficial layer is much longer
han that of the gray-matter layer. The thickness parameter of
calp and skull layers has a significant influence on the partial
ath length of the gray-matter and superficial layers. The
ransport scattering coefficient of the skull layer has also a
omparable influence on the partial path length of the gray-
atter layer. Partial path lengths are insensitive to all other

arameters.
Using the obtained partial path lengths and their sensitivity

oefficients, a measurement weighting designed to yield the
verage optimum separation performance for model param-
ter distribution was derived. The obtained optimum weight-
ng is robust to model parameter deviation and realizes
maller MSEs compared to a weighting that is determined
ithout considering model parameter distribution.

When optimizing a measurement weighting, the covari-
nce matrix � of hemoglobin changes is required. In this
x

ournal of Biomedical Optics 064025-
paper, we assumed a simple model of a hemodynamic change
time course according to the recent study.18 �x was calculated
by this model. Although we considered a statistical distribu-
tion of layer parameters, the variations of hemodynamic
change was not considered in this paper to simplify the analy-
sis.

A significant systemic physiological interference, which is
highly correlated with the functional response, is observed for
a motor task �finger opposition�, and only a small interference
is observed for a cognitive and a visual tasks.5 Thus, the pro-
posed method is effective mainly for a motor task experiment.
However, this method can also suppress the systemic interfer-
ence in the extracerebral layer caused by heart beat and res-
piration, although the theoretical analysis is given without
considering these interferences in this paper to make the
analysis simple. Thus, the proposed method is expected to be
effective for many cases.

In our method, the hemoglobin concentration change is
estimated by applying an inverse of molar absorption coeffi-
cient matrix and an optimized measurement weighting to the
absorbance change obtained by the multidistance measure-
ment 	Eq. �13�
. The applicability of the method strongly de-
pends on the accuracy of the assumed model and its param-
eters. Thus, its naive application to a real measurement may
be inappropriate. As shown in Fig. 6, however, because an
ordinary single-detector NIRS measurement may lead to large
estimation errors if there exists a hemoglobin concentration
change in a superficial layer, we think that the proposed
method is valuable even when we have only a rough knowl-
edge of the model and its parameter values.

Appendix: Derivation of Optimum Measurement
Weighting, W
The criterion J of Eq. �20� is represented as follows:

J = tr�FWTGW� − 2 tr�HWT� + tr�x, �27�

where

F =
1

K�
k=1

K

�LkE�xE
TLk

T� , �28�

G = �E−1�TE−1, �29�

H = �E−1�T�xE
T� 1

K�
k=1

K

Lk
T� . �30�

First we decompose F, G, and H into block matrices accord-
ing to the decomposition structure of W.

F = �F11 F12

F21 F22
� , �31�

G = �G11 G12

G G
� , �32�
21 22
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H = �H11 H12

H21 H22
� . �33�

sing these Eqs. �31�–�33�, Eq. �27� becomes

J = tr�F11W1
TG11W1� + tr�F12W2

TG21W1� + tr�F21W1
TG12W2�

+ tr�F22W2
TG22W2� − 2 tr�H11W1

T� − 2 tr�H22W2
T� + tr�n.

�34�

hen, we have

�J

�W1
= 2G11W1F11 + G21

T W2F12
T + G12W2F21 − 2H11

�35�

=2G11W1F11 + 2G12W2F21 − 2H11, �36�

here we rely on the property that F, G, and �n are symmet-
ic. Similarly,

�J

�W2
= 2G21W1F12 + 2G22W2F22 − 2H11. �37�

hus, we have

G11W1F11 + G12W2F21 = H11, �38�

G21W1F12 + G22W2F22 = H11. �39�

e write csA as a vector obtained by aligning column vectors
f a matrix A in a vertical order. Then the preceding equations
ecome as follows using Kronecker products:

�F11 � G11�csW1 + �F21
T

� G12�csW2 = csH11, �40�

�F12
T

� G21�csW1 + �F22 � G22�csW2 = csH11. �41�

ummarizing equations �40� and �41�, we have

��F11 � G11� �F21
T

� G12�
�F12

T
� G21� �F22 � G22�

��csW1

csW2
� = �csH11

csH22
� . �42�

hus, the optimum W1 and W2 are obtained as follows:

�csW1

csW2
� = ��F11 � G11� �F21

T
� G12�

�F12
T

� G21� �F22 � G22�
�−1�csH11

csH22
� .

�43�
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