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Abstract. A fast directional discrete cosine transform (FD-
DCT) is proposed for efficient representation of anisotropic
edges in images. The transform is performed on the pre-
defined direction lines similar to the intraprediction mode in
H.264. Comparing to the directional discrete cosine trans-
form (DDCT) now available, no interpolation is needed in
FDDCT; thus, the amount of computation decreases by 80%.
Simulation results indicate that the peak signal-to-noise ra-
tios of images compressed using FDDCT are >1 db higher
than those using DDCT. © 2010 Society of Photo-Optical Instrumen-

tation Engineers.
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1 Introduction

Discrete cosine transform (DCT) and discrete wavelet
transform (DWT) used in image compression are imple-
mented by separable 1-D transforms in the rows and col-
umns of images. The major shortcoming of the separable
transform is that it cannot represent the anisotropic edges in
the image sparsely. Recently, various lifting-based direc-
tional transforms " are proposed to overcome the problem.
In the traditional lifting scheme, the transform matrix is
factorized into elementary matrices, which correspond to
the operation of adding a multiple of a row/column to an-
other row/column, and the augend and the addend must be
in the same column/row.*> While in the directional lifting
transform, lifting steps can be performed along edges with
any directions; thus, it can approximate edges better and
represent images more sparsely (see Fig. 1).

However, it is noted that to transform along edges with
arbitrary directions, the fractional pixels are used in adap-
tive directional lifting and the their values are interpolated
from neighboring integer pixels. Denote the number of taps
of the interpolation filter as L, then the computation of di-
rection transform is about L times higher than the original
one."? The high computation cost is a serious drawback in
practice, especially for DCT, which has various faster
approximations6 that are quite suitable to portable devices
and real-time processing, such as satellite onboard image
compression. In this letter, we proposed a fast directional
DCT (FDDCT) without interpolation. Compared to the
original lifting-based directional DCT (DDCT),” the com-
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Fig. 1 Exemplified elementary matrix operation: (a) nondirectional
and (b) directional, where the circles are the pixels and squares are
half-pixels.

putation of FDDCT decreases by 80%, and the peak signal-
to-noise ratios (PSNR) of compressed images are higher.

2 Proposed FDDCT
2.1 Direction Modes without Interpolation

It is known that, in DDCT, interpolation on the fractional
pixels is the main reason that causes large amounts of com-
putation. If we can use only the integer pixels to approxi-
mate edges, then interpolation will be avoided. In this pa-
per, we propose to use five direction modes to achieve this.
These modes are shown in Fig. 2, where no fractional pix-
els exist and the size of transform matrix is 8§ X 8. The
corresponding directional angles are form —45 deg [mode
(a), see Fig. 2(a)] to 45 deg [mode (e), see Fig. 2(e)].

These direction modes are like the prediction modes
used in the intraprediction process in the recent video-
coding standard H.264." For example, modes (a) and (b)
correspond to the diagonal down-right and the vertical-right
prediction in H.264, separately, and the only difference is
that polylines are used to avoid interpolating in our modes.
It also find that five modes are enough to approximate well
most directions of edges in images. ™~ Supposing that the
direction modes of all blocks are selected, the transform
can be performed along the direction lines defined in the
direction modes (see Fig. 3), and the pixels on the direction
line are all integer ones.

2.2 Lifting Steps across Adjacent Blocks

Because the direction modes are defined on the individual
image blocks, there may exist direction lines consisting of
<8 integer pixels, where eight-point fast DCT cannot be
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Fig. 2 Five direction modes in row FDDCT. The circles are integer
pixels, and the dashed lines are direction lines.
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Fig. 3 Direction line across blocks.

performed. Extending the short direction line to the adja-
cent block is a natural way to solve the problem. But we
find that, if the direction modes of adjacent blocks are dif-
ferent, then some pixels will be occupied by more than one
direction lines (see Fig. 3). That is to say, lifting steps in
several DCTs will modify the value of these pixels simul-
taneously. Thus, the DCTs on these direction lines across
blocks must be modified to make the transform perfect re-
construction.

It is known that DCT can be factored into lifting steps,6
and the DCT matrix can be expressed as

T=T, (CO)Ti,,jl(cl) ...T,-”,jn(cn),

ioJo

(1)

where I is the identity matrix of size M, e, is the n’th unit
vector in M-dimensional Euclidean space and ¢, a real
number, is the lifting coefficient. Thus, the lifting matrix

Ti,j(c) =1+ cee;,

T; ;(c) is a triangular matrix, and in every lifting step only
one element in the input vector is modified.

Because all lifting steps are similar, we just think of one
lifting procedure. Take the pixels a, b;, i=0,...,3 in Fig. 3,
for example, where a is occupied by four direction lines. To
avoid modifying a four times with the multiple of b;, we
change the lifting procedure as

3

al=a+c2w,~bi, i=0,...,3,
i=0

L# ], (2)

i ik

where a! is output and w; are the scaling coefficients. The
corresponding inverse transform can be expressed as

3

a=a'-cX whb,
i=0

i=0,...,3. (3)

Obviously, it is perfect reconstruction. In the lifting proce-
dure [Eq. (2)], the mean of pixels on different direction
lines is used to predict the target pixel, which often ap-
proximates the target better than using a single pixel on one
direction line. Furthermore, it should be noted that the
transform on the extended direction line is performed be-
tween adjacent blocks. Therefore, comparing to DCT,
which performs on every block separately, FDDCT can
partly remove the correlation between blocks.
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Fig. 4 PSNR versus bit-rate curves of different transforms.
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Fig. 5 Parts of Barbara compressed with DCT and FDDCT (bit rate:
0.5 bits/pixel): (a) is compressed with DCT and (b) is compressed
with FDDCT.

At last, it must be reminded that the direction modes of
blocks need to be selected before FDDCT. As stated above,
the FDDCT coefficients of a block are only influenced by
its adjacent blocks, which is similar with DDCT. Thus, the
same dynamic programming algorithm in Ref. 2 is used to
select the direction modes in FDDCT to minimize the rate-
distortion cost.

3 Simulation Results

Extensive experiments have been conducted to evaluate the
performance of FDDCT. We report the experimental results
of four common gray images: Lena, Barbara, Boat, and
Photographer, which have different characteristics. FDDCT
is compared to DCT and DWT (CDF9/7 used in
JPEG2000) and DDCT in our experiments. The set parti-
tion coding developed by us in Ref. 8§ is used to code the
coefficients of FDDCT, DCT, and DWT, which is suitable
for both the block transform and the subband transform.
The direction mode of a block is first predicted from the
coded modes of coded neighboring blocks and then is
coded by the arithmetic coding.

Figure 4 shows that PSNRs of images compressed with
FDDCT are close to those with DWT. And compared to
DCT, the coding gain of FDDCT ranges from
0.4 to 1.5 dB. The compression results of DDCT-based
method in Ref. 2 are also given in Fig. 4, whose PSNRs are
>1 dB lower than the proposed FDDCT based one. The
decompressed Barbara is partly shown in Fig. 5. It shows
that the edges in the image compressed by FDDCT are less
disturbed, and the block artifacts are nearly eliminated by
FDDCT. The reason should be that, in FDDCT, many di-
rection lines are extended to the adjacent blocks; thus, the
blocks are not transformed individually. It is helpful to re-
duce block artifacts in the compressed images.

Finally, we give the computational complexity of FD-
DCT. If the direction modes of all blocks in the image are
same, then no special lifting steps are needed; thus, the
computation of FDDCT is the same as that of DCT. But, in
practice, different blocks generally have different direction
modes. As a result, the computation depends on the edges
in the image. In other words, the computation of FDDCT is
image dependent.
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Table 1 Executing time (second) of different transforms.

Transform
Size DCT FDDCT DWT
512x512 0.006547 0.008672 0.032030
1024 X 1024 0.030160 0.038900 0.129220
2048 x 2048 0.131870 0.179953 0.557810

Here, we perform several transforms on many standard
gray-scale images on a 2.93-GHz Pentium IV. The average
executing times of DCT, DWT, and FDDCT are given in
Table 1. It shows that the time of FDDCT is in direct pro-
portion to the size of the image, which is ~1.4 times than
that of DCT and one-third of DWT. Comparing to DDCT,
whose computation is eight times than that of DCT (eight-
tap interpolation is used), the computation decreases by
~80%.

4 Conclusion

By choosing the direction modes consisting of integer pix-
els, a new directional DCT called FDDCT for image com-
pression is proposed in this paper. Because interpolations in
DDCT are avoided, the computation of FDDCT decreases
~80% compared to original DDCT. Furthermore, the use
of interblock information in FDDCT derives less block ar-
tifacts and better rate-distortion performance in the com-
pressed images.
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