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bstract. A fast directional discrete cosine transform �FD-
CT� is proposed for efficient representation of anisotropic
dges in images. The transform is performed on the pre-
efined direction lines similar to the intraprediction mode in
.264. Comparing to the directional discrete cosine trans-

orm �DDCT� now available, no interpolation is needed in
DDCT; thus, the amount of computation decreases by 80%.
imulation results indicate that the peak signal-to-noise ra-

ios of images compressed using FDDCT are �1 db higher
han those using DDCT. © 2010 Society of Photo-Optical Instrumen-
ation Engineers.
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Introduction

iscrete cosine transform �DCT� and discrete wavelet
ransform �DWT� used in image compression are imple-

ented by separable 1-D transforms in the rows and col-
mns of images. The major shortcoming of the separable
ransform is that it cannot represent the anisotropic edges in
he image sparsely. Recently, various lifting-based direc-
ional transforms1–3 are proposed to overcome the problem.
n the traditional lifting scheme, the transform matrix is
actorized into elementary matrices, which correspond to
he operation of adding a multiple of a row/column to an-
ther row/column, and the augend and the addend must be
n the same column/row.4,5 While in the directional lifting
ransform, lifting steps can be performed along edges with
ny directions; thus, it can approximate edges better and
epresent images more sparsely �see Fig. 1�.

However, it is noted that to transform along edges with
rbitrary directions, the fractional pixels are used in adap-
ive directional lifting and the their values are interpolated
rom neighboring integer pixels. Denote the number of taps
f the interpolation filter as L, then the computation of di-
ection transform is about L times higher than the original
ne.1,2 The high computation cost is a serious drawback in
ractice, especially for DCT, which has various faster
pproximations6 that are quite suitable to portable devices
nd real-time processing, such as satellite onboard image
ompression. In this letter, we proposed a fast directional
CT �FDDCT� without interpolation. Compared to the
riginal lifting-based directional DCT �DDCT�,2 the com-

091-3286/2010/$25.00 © 2010 SPIE
ptical Engineering 020501-
putation of FDDCT decreases by 80%, and the peak signal-
to-noise ratios �PSNR� of compressed images are higher.

2 Proposed FDDCT

2.1 Direction Modes without Interpolation
It is known that, in DDCT, interpolation on the fractional
pixels is the main reason that causes large amounts of com-
putation. If we can use only the integer pixels to approxi-
mate edges, then interpolation will be avoided. In this pa-
per, we propose to use five direction modes to achieve this.
These modes are shown in Fig. 2, where no fractional pix-
els exist and the size of transform matrix is 8�8. The
corresponding directional angles are form −45 deg �mode
�a�, see Fig. 2�a�� to 45 deg �mode �e�, see Fig. 2�e��.

These direction modes are like the prediction modes
used in the intraprediction process in the recent video-
coding standard H.264.7 For example, modes �a� and �b�
correspond to the diagonal down-right and the vertical-right
prediction in H.264, separately, and the only difference is
that polylines are used to avoid interpolating in our modes.
It also find that five modes are enough to approximate well
most directions of edges in images.1,2 Supposing that the
direction modes of all blocks are selected, the transform
can be performed along the direction lines defined in the
direction modes �see Fig. 3�, and the pixels on the direction
line are all integer ones.

2.2 Lifting Steps across Adjacent Blocks
Because the direction modes are defined on the individual
image blocks, there may exist direction lines consisting of
�8 integer pixels, where eight-point fast DCT cannot be

Fig. 1 Exemplified elementary matrix operation: �a� nondirectional
and �b� directional, where the circles are the pixels and squares are
half-pixels.

Fig. 2 Five direction modes in row FDDCT. The circles are integer
pixels, and the dashed lines are direction lines.
February 2010/Vol. 49�2�1
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erformed. Extending the short direction line to the adja-
ent block is a natural way to solve the problem. But we
nd that, if the direction modes of adjacent blocks are dif-
erent, then some pixels will be occupied by more than one
irection lines �see Fig. 3�. That is to say, lifting steps in
everal DCTs will modify the value of these pixels simul-
aneously. Thus, the DCTs on these direction lines across
locks must be modified to make the transform perfect re-
onstruction.

It is known that DCT can be factored into lifting steps,6

nd the DCT matrix can be expressed as

= Ti0,j0
�c0�Ti1,j1

�c1� . . . Tin,jn
�cn� ,

i,j�c� = I + ceie j , �1�

here I is the identity matrix of size M, en is the n’th unit
ector in M-dimensional Euclidean space and c, a real
umber, is the lifting coefficient. Thus, the lifting matrix

Fig. 3 Direction line across blocks.

Fig. 4 PSNR versus bit-ra
ptical Engineering 020501-
Ti,j�c� is a triangular matrix, and in every lifting step only
one element in the input vector is modified.

Because all lifting steps are similar, we just think of one
lifting procedure. Take the pixels a, bi, i=0, . . . ,3 in Fig. 3,
for example, where a is occupied by four direction lines. To
avoid modifying a four times with the multiple of bi, we
change the lifting procedure as

a1 = a + c�
i=0

3

wibi, i = 0, . . . ,3,

�
i=0

3

wi = 1, wi = wj, i � j , �2�

where a1 is output and wi are the scaling coefficients. The
corresponding inverse transform can be expressed as

a = a1 − c�
i=0

3

wibi, i = 0, . . . ,3. �3�

Obviously, it is perfect reconstruction. In the lifting proce-
dure �Eq. �2��, the mean of pixels on different direction
lines is used to predict the target pixel, which often ap-
proximates the target better than using a single pixel on one
direction line. Furthermore, it should be noted that the
transform on the extended direction line is performed be-
tween adjacent blocks. Therefore, comparing to DCT,
which performs on every block separately, FDDCT can
partly remove the correlation between blocks.

es of different transforms.
te curv
February 2010/Vol. 49�2�2
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At last, it must be reminded that the direction modes of
locks need to be selected before FDDCT. As stated above,
he FDDCT coefficients of a block are only influenced by
ts adjacent blocks, which is similar with DDCT. Thus, the
ame dynamic programming algorithm in Ref. 2 is used to
elect the direction modes in FDDCT to minimize the rate-
istortion cost.

Simulation Results

xtensive experiments have been conducted to evaluate the
erformance of FDDCT. We report the experimental results
f four common gray images: Lena, Barbara, Boat, and
hotographer, which have different characteristics. FDDCT

s compared to DCT and DWT �CDF9/7 used in
PEG2000� and DDCT in our experiments. The set parti-
ion coding developed by us in Ref. 8 is used to code the
oefficients of FDDCT, DCT, and DWT, which is suitable
or both the block transform and the subband transform.
he direction mode of a block is first predicted from the
oded modes of coded neighboring blocks and then is
oded by the arithmetic coding.

Figure 4 shows that PSNRs of images compressed with
DDCT are close to those with DWT. And compared to
CT, the coding gain of FDDCT ranges from
.4 to 1.5 dB. The compression results of DDCT-based
ethod in Ref. 2 are also given in Fig. 4, whose PSNRs are
1 dB lower than the proposed FDDCT based one. The

ecompressed Barbara is partly shown in Fig. 5. It shows
hat the edges in the image compressed by FDDCT are less
isturbed, and the block artifacts are nearly eliminated by
DDCT. The reason should be that, in FDDCT, many di-
ection lines are extended to the adjacent blocks; thus, the
locks are not transformed individually. It is helpful to re-
uce block artifacts in the compressed images.

Finally, we give the computational complexity of FD-
CT. If the direction modes of all blocks in the image are

ame, then no special lifting steps are needed; thus, the
omputation of FDDCT is the same as that of DCT. But, in
ractice, different blocks generally have different direction
odes. As a result, the computation depends on the edges

n the image. In other words, the computation of FDDCT is
mage dependent.

ig. 5 Parts of Barbara compressed with DCT and FDDCT �bit rate:
.5 bits/pixel�: �a� is compressed with DCT and �b� is compressed
ith FDDCT.
ptical Engineering 020501-
Here, we perform several transforms on many standard
gray-scale images on a 2.93-GHz Pentium IV. The average
executing times of DCT, DWT, and FDDCT are given in
Table 1. It shows that the time of FDDCT is in direct pro-
portion to the size of the image, which is �1.4 times than
that of DCT and one-third of DWT. Comparing to DDCT,
whose computation is eight times than that of DCT �eight-
tap interpolation is used�, the computation decreases by
�80%.

4 Conclusion

By choosing the direction modes consisting of integer pix-
els, a new directional DCT called FDDCT for image com-
pression is proposed in this paper. Because interpolations in
DDCT are avoided, the computation of FDDCT decreases
�80% compared to original DDCT. Furthermore, the use
of interblock information in FDDCT derives less block ar-
tifacts and better rate-distortion performance in the com-
pressed images.
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