Errata: Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

Bradley E. Losavio
Baylor College of Medicine
Department of Neuroscience
One Baylor Plaza
Houston, Texas 77030

Vijay Iyer
Howard Hughes Medical Institute
19700 Helix Drive
Ashburn, Virginia 20147

Peter Saggau
Baylor College of Medicine
Department of Neuroscience
and
Department of Molecular Physiology and Biophysics
One Baylor Plaza
Houston, Texas 77030
[DOI: 10.1117/1.3311562]

This article [J. Biomed. Opt. 14, 064033 (2009)] was originally published online on 31 December 2009 with errors in Table 1. The following corrections were made:

1) In column 2, row 2, the first numeral 2 underneath the square root bracket was removed;
2) In column 2, row 4, \(\theta_{\text{compensated}} \) was changed to \(\theta_{\text{dispersion}} \). Also “grating” was changed to “grating.”
3) In column 4, row 6, the value “627” was changed to “672.” The corrected table appears below.

In addition, in the line following Eq. (11) on page 8, the first super script \(-7\) was corrected to \(-5\) to read “with the parameters \(\lambda = 7.2 \times 10^{-5} \text{ cm}, c = 3 \times 10^{-5} \text{ cm/fsec} \).” All versions of the article were corrected on 12 January 2010 and the article appears correctly in print.

Table 1 Theoretical spectral dispersion and compensation of TeO_2 AODs. The following parameters are used: wavelength \(\lambda = 720 \text{ nm} \); spectral bandwidth \(\Delta \lambda = 3.68 \text{ nm} \); AOD aperture \(D = 10 \text{ mm} \); acoustic velocity \(v = 676 \text{ m/sec} \); scan range \(\theta_{\text{scan}} = 42.6 \text{ mrad} \); diffraction \(\theta_{\text{diffraction}} = 0.0634 \text{ mrad} \); grating pitch \(d = 150 \text{ grooves/mm} \); effective compensation frequency \(f_{\text{comp}} = \sqrt{2} \Delta \lambda f_{\text{comp}} / v = 71.1 \text{ MHz} \); and compensation grating \(\theta_{\text{grating}} = \sqrt{2} \Delta \lambda f_{\text{comp}} / v = 552 \text{ mrad} \).

<table>
<thead>
<tr>
<th></th>
<th>(f_{\text{min}} = 50 \text{ MHz})</th>
<th>(f_{0} = 70 \text{ MHz})</th>
<th>(f_{\text{max}} = 90 \text{ MHz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D spectral dispersion (\theta_{\text{dispersion}})</td>
<td>(\sqrt{\frac{\Delta \lambda}{v}})</td>
<td>385</td>
<td>539</td>
</tr>
<tr>
<td>Dispersed resolution (N) (\theta_{\text{scan}} / \theta_{\text{dispersion}})</td>
<td>110</td>
<td>79</td>
<td>61 spots</td>
</tr>
<tr>
<td>Spot elongation (S) (\theta_{\text{dispersion}} / \theta_{\text{diffraction}})</td>
<td>6.1(\times)</td>
<td>8.5(\times)</td>
<td>10.9(\times)</td>
</tr>
<tr>
<td>2-D spectral dispersion (\theta_{\text{compensated}}) (</td>
<td>\theta_{\text{dispersion}} - \theta_{\text{grating}}</td>
<td>167</td>
<td>13.1</td>
</tr>
<tr>
<td>Compensated resolution (N') (\theta_{\text{scan}} / \theta_{\text{compensated}})</td>
<td>253</td>
<td>672(^a)</td>
<td>302 spots</td>
</tr>
<tr>
<td>Compensated spot elongation (S') (\theta_{\text{compensated}} / \theta_{\text{diffraction}})</td>
<td>2.64(\times)</td>
<td>0.21(\times)</td>
<td>2.22(\times)</td>
</tr>
</tbody>
</table>

\(^a \)When \(\theta_{\text{compensated}} < \theta_{\text{diffraction}} \), the number of compensated spots becomes \(N' = \theta_{\text{scan}} / \theta_{\text{diffraction}} \), and the scanning is diffraction limited.