
S
u
o

D
Y
Y
M
N
C
D
C

F
X
N
C

1

M
i
a
r
t
n
b
e
l

v
b
u
o
n
c
m
t

A
C
n
8

Journal of Biomedical Optics 15�3�, 036025 �May/June 2010�

J

eparation of arteries and veins in the cerebral cortex
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Abstract. An automated method is presented for artery-vein separa-
tion in cerebral cortical images recorded with optical imaging of the
intrinsic signal. The vessel-type separation method is based on the fact
that the spectral distribution of intrinsic physiological oscillations var-
ies from arterial regions to venous regions. In arterial regions, the
spectral power is higher in the heartbeat frequency �HF�, whereas in
venous regions, the spectral power is higher in the respiration fre-
quency �RF�. The separation method was begun by extracting the vas-
cular network and its centerline. Then the spectra of the optical intrin-
sic signals were estimated by the multitaper method. A standard F-test
was performed on each discrete frequency point to test the statistical
significance at the given level. Four periodic physiological oscillations
were examined: HF, RF, and two other eigenfrequencies termed F1
and F2. The separation of arteries and veins was implemented with
the fuzzy c-means clustering method and the region-growing ap-
proach by utilizing the spectral amplitudes and power-ratio values of
the four eigenfrequencies on the vasculature. Subsequently, indepen-
dent spectral distributions in the arteries, veins, and capillary bed
were estimated for comparison, which showed that the spectral dis-
tributions of the intrinsic signals were very distinct between the arte-
rial and venous regions. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

ost brain imaging techniques, such as optical imaging of
ntrinsic signal �OIS� and functional magnetic resonance im-
ging �fMRI�, rely on blood oxygen content for imaging neu-
onal activity.1–3 Thus, hemodynamic changes play an impor-
ant role in investigating the coupling relationship between
eurovascular response and functional brain mapping.4 Cere-
ral hemodynamics is considered to be closely related to sev-
ral compartments, including arterial, venous, arteriolar, venu-
ar, and other capillary dynamics.5,6

To collect information on the detailed activity of cerebral
essels, researchers have constructed many vascular models
y investigating the dynamics of the vascular compartments
sing optical imaging of intrinsic signal. Friston et al. devel-
ped a nonlinear dynamic model of hemodynamic response to
eural activity by linking the normalized deoxyhemoglobin
hanges to stimulation in the venous compartment.7 This
odel was extended by Zheng et al. via construction of a

hree-compartment hemodynamic model, including the arte-

ddress all correspondence to: Dewen Hu, Department of Automatic Control,
ollege of Mechatronics and Automation, National University of Defense Tech-
ology, Changsha Hunan, 410073 China. Tel: 86-731-84574992; Fax: 86-731-
4574992; E-mail: dwhu@nudt.edu.cn
ournal of Biomedical Optics 036025-
rial, venous, and capillary compartments, for further study of
the relationship between hemodynamic changes and neural
activity.8,9 Vanzetta and Grinvald developed the dual-
wavelength imaging method to identify the microvascular
compartments for analyzing the activity-dependent dynamics
of the cortical blood volume and oximetry.5 Recently, vascular
compartment dynamics has been examined with 3-D laminar
optical tomography �LOT� and in vivo two-photon micros-
copy during somatosensory stimulation.10 More detailed in-
formation about hemodynamics has been revealed using these
newly developed techniques. Schiessl et al. employed inde-
pendent component analysis �ICA� to study hemodynamic re-
sponses by separating the vascular compartments to improve
the signal-to-noise ratio �SNR� in functional brain mapping.11

They studied the distinct response dynamics of the arterial,
venous, and capillary compartments by identifying each re-
gion using ex vivo vascular casts following the LOT data and
two-photon image acquisition. Luo et al. investigated the dif-
ferent responses between venules and arterioles by laser
speckle imaging of the cerebral blood flow in
microcirculation.12,13 By separating the arteries and veins, it
would be feasible to investigate in greater detail the spa-
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iotemporal characteristics of arterial, venous, and capillary
ed regions independently to determine their coupling rela-
ionships with neural activity using 2-D optical imaging.

Automatic separation of arteries and veins is also impor-
ant for computer-aided diagnosis of vascular diseases, e.g.,
neurysm, stenosis, and retinal arteriosclerosis.14–16 To en-
ance the visualization of the vascular structure, it is critical
o segment the vascular network and to distinguish arteries
nd veins. However, due to the complexity of the vascular
etwork, it is time consuming and impractical to do this
anually, suggesting a need for robust and quick techniques

o identify and separate arteries from the vascular network
ith a minimal amount of manual intervention.

According to our known literature, little work has been
ublished to automatically identify arteries and veins in the
erebral cortex. A few papers have reported on artery-vein
eparation using retinal fundus image and magnetic resonance
ngiography �MRA�. Yu et al. and Akita et al. identified the
essel types by utilizing the intensity difference between ar-
eries and veins in a retinal fundus image.17,18 A piecewise
aussian model for profiling and differentiating retinal arter-

es and veins was proposed to describe the intensity distribu-
ion by considering the central reflex characteristic of the
essels.19 Grisan et al. developed a so-called divide et impera
trategy with color information for automatic discrimination
f retinal vessels into arteries and veins.20 However, these
escribed methods utilize only the intensity profile and may
e prone to errors in the optical image of the cerebral cortex.
ore recently, Narasimha-Iyer et al. combined structural and

unctional features that are the ratio of optical densities ob-
ained through dual-wavelength illumination to separate reti-
al arteries and veins with an improved result.21 In MRA and
omputed tomography �CT�, several methods to separate ar-
eries and veins have also been proposed for many potential
pplications in the head, neck, lungs, heart, abdomen, and
ower extremities.22,23 These separation strategies include ac-
uisition methods, post-processing techniques, and image-
rocessing methods.22 A software package called
DVIEWNIX-AVS for artery-vein separation was developed
o improve the vascular visualization of contrast-enhanced

RA images.24 Although the above strategies have been suc-
essfully applied in 3-D MRA images, most of them, such as
he phase-contrast and time-resolved acquisition approaches,

ay be unsuitable to apply to on 2-D optical imaging data
ecause of their specificity related to MRA.

In this paper, we present an automated method for artery-
ein separation in cerebral cortical images recorded with op-
ical imaging of intrinsic signal. Differing from prior works,
his artery-vein separation method utilizes the vessel dynamic
nformation based on the fact that the power spectra of the
ntrinsic physiological oscillations distribute differently on ar-
eries than on veins. First, we extracted the vascular network
rom one cortical image, then determined the spectral features
f the intrinsic signals by the multi-taper method �MTM� and
tatistical F-test. Finally, we separated the arteries and veins
sing the fuzzy c-means �FCM� method and region-growing
pproach. These procedures are described in this paper fol-
owed by a discussion, in which we analyze the limitations of
ur method and characterize the phase distributions of the
ntrinsic signals.
ournal of Biomedical Optics 036025-
2 Materials and Methods
2.1 Optical Imaging of Intrinsic Signal
Optical imaging of intrinsic signal �OIS� is a functional brain-
mapping technique that is increasing in popularity. OIS mea-
sures neural activities by imaging the reflected and scattered
light from the active cerebral cortex. OIS offers both a higher
spatial and temporal resolution than that achieved by most
other alternative imaging techniques, such as fMRI and posi-
tron emission tomography �PET�, for imaging cortical func-
tional architecture.1,25–27

In this study, all the image data were recorded using the
IMAGER 3001 system �Optical Imaging Inc., New York�. A
schematic of the OIS system is shown in Fig. 1. The camera
system consisted of a charge-coupled device �CCD� array
with high precision �12-bit depth, �60-dB dynamic range�
and a set of front-to-front f1.2 camera lenses with a diameter
of 50 mm. The camera was mounted to an XYZ regulation
holder that was fixed on a vibration-isolated table for steady
focusing on the region of interest �ROI� of the cerebral cortex.
The cortical surface was epiilluminated with green light
�546�10 nm� from a stabilized tungsten halogen lamp via
light guides. This wavelength is one of the isosbestic points
for the absorption of oxyhemoglobin and deoxyhemoglobin
and can reflect cerebral blood volume changes more signifi-
cantly than red light �600�630 nm� in the visible spectrum.
Also, imaging with this green light can maximize the contrast
of the vasculature and provide morphological information for
segmentation of the blood vessels. A personal computer was
used to capture and store the image data. The size of one
image could reach 1024�1024 pixels in a factual imaging
area of 12�12 mm2 �approximate 12�12 �m2 per pixel�,
which offered high-resolution images for the vessel-type sepa-
ration procedure.

2.2 Animal Preparation and Data Collection
In vivo imaging experiments were performed using male
Sprague-Dawley �SD� rats �250 to 300 g, n=12� provided by
the neurophysiology department in Xiangya Medical College
of Center South University. The surgical procedures were de-
scribed in detail in many previous reports.2,26,28,29 Briefly, the
rats were anesthetized with urethane �1 g /kg� by intraperito-
neal injection. The anesthetic depth was maintained at a mod-
erate level. The animal skull was exposed via a midline scalp
incision and then thinned over the somatosensory cortex be-

Fig. 1 Intrinsic optical imaging system. A stabilized halogen lamp pro-
vides the illumination source of a specific wavelength using a light
filter. The high-resolution CCD camera has a 12-bit depth, �60-dB
dynamic range, and two reverse-connected camera lenses. The per-
sonal computer stores the collected image data.
May/June 2010 � Vol. 15�3�2
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ween bregma and lambda using a saline-cooled dentistry drill
ntil the vessels of the cortex could be clearly observed. A
hamber was fixed on the thinned skull using dentistry cement
nd filled with silicone oil to increase the translucency. The
ody temperature was measured by a temperature recorder
nd maintained at 37.0�0.5 °C using a heating regulator
ad. The respiration rate and heart rate �electrocardiogram�
ere monitored by a physiological record instrument �MP150,
IOPAC Inc., USA� to ensure a stable physiological state
uring data collection throughout each animal experiment.
he recorded respiration frequency �RF� distributed from 1
2 Hz and the heartbeat frequency �HF� distributed from 5
6 Hz. During the optical imaging, the optical axis of the

amera lens was kept perpendicular to the ROI to guarantee
igh-quality imaging. The image data were captured at 15 Hz.
he sampling time duration was 40 s in our experiments, cor-

esponding to a sampling resolution of 0.025 Hz in frequency.
he RF and HF values detected from the optical imaging were
asically the same as those in the physiological record instru-
ent.

.3 Extraction of the Vessel Network and its
Centerline

he first step of the artery-vein separation was to segment the
asculature from one cortical gray image chosen arbitrarily
rom the image sequence. Though few vessel segmentation
ethods are proposed for the cortical images, numerous ap-

roaches for retinal vessel extraction have been presented in
he literature.30–34 We extracted the vessel network using an
xtended method proposed by Li et al.30 with a Gaussian-
aplacian filter and automated threshold selection.31,35 The
oundary of the extracted vessel was refined using the Gauss-
an matched filter constructed by the nonlinear Levenberg-

arquardt method.30 Figures 2�a�–2�c� show a retinal image
nd the segmented vessels by Li’s method and our initial seg-
entation method, respectively. Among the four leading algo-

ithms in the retinal DRIVE database �see Table 1�, this initial

ig. 2 Extraction of the vasculature and its centerline network. �a� A
etinal fundus image used in Ref. 30. �b� Vessels detected by method
sed in Ref. 30. �c� Vessels extracted by our initial vessel segmenta-

ion method. �d� Raw cortical gray image captured with the optical
maging system. �e� Vasculature segmented from the raw gray image.
f� Centerline of the vascular network obtained by morphological op-
ration of thinning. The branching points are marked by a larger gray
alue.
ournal of Biomedical Optics 036025-
vessel segmentation method ensures that false vessels produce
the lowest acceptable level of true positives, which is practi-
cable for our artery-vein separation method.

An extracted cortical vessel network denoted by VB is
shown in Fig. 2�e�, and the raw gray image can be seen in Fig.
2�d�. To extract the vessel centerline from the vessel network,
VB was first converted into a binary image. Then a morpho-
logical thinning operator35 was applied to the binary image to
obtain the vascular centerlines, as shown in Fig. 2�f�. The
branching and crossover points were detected and labeled on
the centerline network. For each intersection point, the num-
ber of its neighboring pixels with logical 1 should be no less
than three under the definition of eight-connectivity. All of the
detected branching and crossover points were assigned with a
value differing from the other pixel values in the centerline
network. These intersection points segmented the vessels into
pieces on which the artery-vein separation procedure was
implemented. Any two neighboring vessel segments were
judged whether they belonged to the same vessel based on the
similarity of their tangential directions in the neighborhood of
the noted intersection point.

2.4 Feature Extraction in Frequency Domain

The time course for each pixel was transformed into the fre-
quency domain to extract the spectral features. A mean time
course for all image pixels is shown in Fig. 3�a�. If x�n�
denotes the average gray level of the n’th image, n
=1, . . . ,N, where N is the number of the sampling image in
each trial, then N=T /�t, where T is the duration of one trial.
Using the MTM,36,37 x�n� was transformed into an expression
of power spectral density �PSD� denoted by P�k�, 0�k�N.

The MTM utilizes multiorthogonal data tapers known as a
discrete prolate spheroidal sequence �DPSS� to estimate the
spectrum in the adaptive weighted forms. Briefly, for a time
sequence x�n�, n=0, . . . ,N−1, the frequency eigencoeffi-
cients can be computed by36,37

Table 1 Performance comparisons of the initial vessel segmentation
method and four other leading algorithms on the retinal DRIVE data-
base. The performance comparison shows that our initial vessel seg-
mentation method is practicable for the separation of arteries and
veins, ensuring false vessels produce the lowest acceptable level of
true positives.

Method TPR FPR Ac

Al-Diri et al. �2009� 0.7282 0.0449 0.9258

Martinez-Perez et al. �2007� 0.7246 0.0345 0.9344

Staal et al. �2004� 0.7194 0.0227 0.9441

Jiang et al. �2003� 0.6478 0.0374 0.9212

Our initial method 0.6651 0.0189 0.9430

TPR: truth positive rate; FPR: false positive rate; Ac: accuracy. Here, the TPR, FPR,
and Ac are computed depending on the pixel number of each class.
May/June 2010 � Vol. 15�3�3
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yk�f� = �
n=0

N−1

x�n�vn
�k�e−i2�fn, k = 0, ¯ ,K − 1, �1�

here �x�n�� is the sequence of data samples, f is the fre-
uency in standard units, and vn

�k� is the k’th DPSS data win-
ow or taper defined as the real, unit-energy sequences on
0,N−1�. The number of the data tapers is determined by
� �2NW�, where W is the bandwidth in standardized units.
hen the range of the spectrum is not too large, the multi-

aper estimate can be approximated as

P̂�f� =
1

K �
k=0

K−1

�yk�f��2. �2�

or a periodic signal at frequency f0 with amplitude �, the
east-squares estimate of � is given by

�̂�f� =

�
k=0

K−1

yk�f�Vk�f − f0�

�
k=0

K−1

Vk
2�f − f0�

. �3�

he statistical F-test is presented as follows:

F�f� =

1

2
��̂�f��2�

k=0

K−1

�Vk�f − f0��2

1

2K − 2
r2�f ,�̂�f��

, �4�

here �̂�f� is the complex amplitude at frequency f estimated
y ordinary least-squares regression; Vk�f − f0�, the k’th Sl-
pian function, is the Fourier transform of the corresponding
lepian sequence; and r2	f , �̂�f�
 is the minimized residual
um of squares, so the ratio of the energy in the F-test can be
xplained by assuming a line component to the residual en-
rgy. The standardized F variance-ratio test has 2 and 2K−2
egrees of freedom.37 If the F value at frequency f0 is larger
han the given threshold, f0 is thought to be a periodic com-
onent rather than the background noise.

Due to the limited frequency resolution and the different
hysiological sources for respiration and heartbeat,38,39 signals
elow 1 Hz, known as low-frequency oscillations with a cen-
er component of 0.1 Hz,38 were not prepared for discussion
n the following vessel separation procedure. In the frequency
ange of greater than 1 Hz, four significant linear spectral
omponents were detected by spectrum estimation and statis-
ical F-test at significance level �=0.05. These four compo-
ents were HF, RF, the first significant frequency denoted as
1, and the second significant frequency denoted as F2. For
n SD rat, RF is approximately 2 Hz and HF is approximately
Hz; the actual values of RF and HF are dependent on ex-

erimental individuals and their physiological state.39 For ex-
mple, in the shown data, RF was approximately 1.6 Hz and
F approximately 5.7 Hz 	see Fig. 3�b�
. Based on the F-test

esults on each spectral component, the F values indicated
hat there were significant linear components at the four fre-
uency points 	for HF, p�0.05; for RF, F1, and F2,
ournal of Biomedical Optics 036025-
p�0.01; see Fig. 3�c�
. Additionally, the spectral power of
these four linear components occupied over 10% of the gross
power ranging from 1 to 7.5 Hz. Therefore, RF, F1, F2, and
HF were all selected as the feature frequencies for artery-vein
separation.

A spectral power-ratio calculation in the range of
1�7.5 Hz was implemented at each pixel to reduce the effect
of uneven illumination and to enhance the contrast between
vessels and cortical parenchyma. Four power-ratio images
corresponded to the four eigenfrequencies. Each power-ratio
image was obtained by computing the ratio of the spectral
power at the corresponding eigenfrequency to the summation
of the spectral power ranging from 1 to 7.5 Hz at each pixel.
The spectral amplitudes and power-ratio values constructed
four couples of new gray intensity images, which were termed
the spectral amplitude images and power-ratio images of RF,
F1, F2, and HF, respectively �see Fig. 4�.

Both sides of most veins had higher RF amplitude than in
venous central region. The RE is considered to reflect the
periodical changes of the cerebral blood volume in the veins.
The statistical significance of RF was also an important factor
for choosing RF as one of the eigenfrequencies. The fre-
quency of F2 behaved much stronger in the capillaries and

Fig. 3 �a� Mean time course for all pixels of the captured image se-
quence. �b� Power spectral density of the mean time course as esti-
mated by the MTM algorithm in Matlab. RF and HF, as well as eigen-
frequencies F1 and F2, are labeled. The bandwidth between the two
black dashed lines indicates the 1–7.5-Hz frequency range for com-
puting the spectral power ratio values. The power summation in this
spectral range is used as the denominator. �c� Results of statistical
F-test spectral components showing. HF had a 	95% significance
level �horizontal dashed line at the bottom�, while RF, F1, and F2 had
a significance level 	99% �dashed line at the top�.
May/June 2010 � Vol. 15�3�4



t
r
r
w
t
T
V
a
m
l
o
t
b
i
d
w
o
r
f
i
h
a
s
e
r
a
a
t

a
t
a
g
m
t
e

F
	
t
q
w
t
c

F
m
r

Hu et al.: Separation of arteries and veins in the cerebral cortex using physiological oscillations…

J

hin vessels than in large vessels. The amplitude of F2 was
elatively small in the main veins, and its power ratio was
elatively small in both arteries and veins. The F2 frequency
as considered to mainly reflect the red blood cells �RBCs�

hat traveled discretely in the vessels observed under OIS.
his phenomenon was in accordance with observations by
anzetta et al.,40 and can be seen clearly in the recorded video
fter being bandpass filtered. Due to the thick walls of the
ain blood vessels, RBC movement may not be seen in the

arge arteries and veins using optical imaging. The amplitudes
f F1 and HF were significantly different in the arteries than
he veins. Both F1 and HF �especially HF� were observed to
e stronger in the arteries than in the veins. The power-ratio
mage of HF revealed more differences in amplitude intensity
istribution between the major arterial and venous regions,
hich provided more detailed information for the separation
f arteries and veins. Therefore, both the amplitude and power
atio of HF were chosen as the elements of the feature vector
or artery-vein separation. The arteries moved and oscillated
n a different pattern with both sides of the arteries exhibiting
igher HF amplitudes than the central regions, which presum-
bly was caused by the vasomotion and transverse oscillation
ection by section at the frequency of the heartbeat. The
igenfrequency of F1 presented partly the same physiological
esponse as HF. F1 had larger amplitude intensities in the
rteries than RF and F2. The optical intrinsic signals would be
mixture in the artery-vein overlapping place, which must be

aken into account in the artery-vein separation procedure.
The cerebral cortex consists of three compartments—

rteries, veins, and the capillary bed—according to the spec-
ral distribution of the four eigenfrequencies 	see Figs. 4�a�
nd 4�b�
. For each compartment, four typical rectangular re-
ions were manually selected with square regions, and the
ean pixel sequence of each area was then transformed into

he spectral domain by MTM to compare their spectral differ-
nces �see Fig. 5�.

Figure 5�b� shows that the spectral magnitudes of HF and
1 were much higher than that of the other frequencies in the
1-Hz range in the arterial regions. In the venous regions,

he spectral magnitudes of RF were higher in the 	1-Hz fre-
uency range, and the absolute spectral amplitudes of HF
ere comparable to RF. In the capillary bed, HF and F2 were

he two dominant frequencies. Therefore, RF and HF were
onsidered to be the main factors for identifying arteries and

ig. 4 �a� Normalized spectral amplitude 1, 2, 3, and 4, and �b� nor-
alized power-ratio distributions 1, 2, 3, and 4 of RF, F1, F2, and HF,

espectively �AMP=amplitude�.
ournal of Biomedical Optics 036025-
veins. In the F-test values, HF was less significant than RF,
F1, and F2, which was probably because the arterial compart-
ment occupied a small area in the ROI of the cerebral cortex.

2.5 Artery-Vein Separation Using the Fuzzy C-Means
Method

To separate the arteries and veins, the FCM clustering
method41 was first used to determine the arterial seeds. Con-
sidering the uneven spectral power distribution of the intrinsic
physiological signals, the seeded region-growing method42

was then applied to form integral vessel pieces from the clas-
sified seeds on the centerline of the vascular network. FCM
clustering is an elementary but popular approximate cluster-
ing approach. It can be used to classify a data set with N items
into c classes. The principle of this clustering approach is
described as follows: Mathematically, the objective function
of FCM for partitioning a dataset �xj� j=1

N �Rd into c clusters
can be given by

Jm�U,
� = �
j=1

N

�
i=1

c

uij
m�xj − �i�2, �5�

where U= �uij�c�N is the fuzzy membership degree matrix
that satisfies

Fig. 5 Comparison of the power spectra in arteries, veins, and capil-
lary bed. �a� Illustration of the manually selected typical feature re-
gions with three class regions located in the arteries, veins, and cap-
illary bed. Each of the four regions in the same compartment is
marked with the same color. �b� Power spectra estimation of the pixel
sequences in the arteries, veins, and capillary bed. All the spectra
were estimated by the MTM algorithm.
May/June 2010 � Vol. 15�3�5
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U ��uij � 	0,1
� ∀ i,0 � �
j=1

N

uij � N� ∀ j,�
i=1

c

uij = 1
 ,

nd 
= ��1 ,�2 , ¯ ,�c� stands for the centroids of the clus-
ers. The notation � · � stands for the Euclidean norm, and N is
he number of elements in the dataset. The parameter m rep-
esents the weighting exponent on each fuzzy membership
nd can be arbitrarity selected from the domain of �1,��.

The FCM clustering approach was used to classify the ar-
erial seeds from the four couples of spectral amplitude and
ower-ratio images. A morphologically clean filter was then
erformed on the clustered image to remove the point noise.
ubsequently, an intersection operator was conducted on the
ascular centerline to obtain the seeds of each compartment.
he seeded region-growing method was applied to the vessel
egments to reconstruct the arteries and veins based on the
lassified seeds. Two criteria were defined in the growing re-
ion:

1. The homogeneity criterion: If the intensity of the can-
idate pixel was in the tolerance region of the average inten-
ity of the premerged region, the candidate pixel was merged.
n our procedure, the vessel network was converted to a bi-
ary image. So if the candidate pixel was equal to logical 1
nd had a neighboring seeded pixel with eight-connectivity, it
as merged into the region.

2. The local stop criterion: If the neighboring candidate
ixel was the crossover or branching point, the growing pro-
ess was stopped.

The five steps of the separation procedure, with the arter-
es, veins, and vascular network denoted by A, V, and VN,
espectively, are described below:

Step 1: Extract the vascular network from the grayscale
ortical image and obtain the centerline of the vascular net-
ork with the method described in Sec. 2.3.

Step 2: Determine the arterial seed sets by the FCM clus-
ering method. After the clustering returns, pixels in the clus-
er with maximum mean spectral power of HF are judged to
e the arterial parts. The pseudo-code of the FCM method is
iven below.

ig. 6 Convergence validation of FCM method with different initial me
n six runs. �b� Corresponding final clustering membership for each c
ournal of Biomedical Optics 036025-
Fuzzy c-means clustering

Begin initialize the cluster number c, the parameter m, here
m=2, and an appropriate small positive number 
	0,
determine the initialized fuzzy membership matrix U�0�, set
s=0.U�0� is initialized by randomly generation. The sum
of each c columns of U�0� is equal to unity, as required by
FCM.

Do �1� Compute 
s depend on U�s�:

�i
�s� = �

j=1

N

uij
mxj��

j=1

N

uij
m, i = 1,2, . . . ,c

�2� Renew the matrix value U�s� to U�s+1�

uij = 1��
k=1

c � dij

dkj
�2/�m−1�

Until �U�s�−U�s−1���
, or s=s+1.

Return U

End

Step 3: Find the arterial seeds on the centerline of the
vascular network by applying the morphological operator of
intersection ‘�’.

Step 4: Run the region-growing procedure to obtain the
integral arterial centerline segments. The pseudo-code of re-
gion growing for arteries is given below.

hip matrices on one image data point. �a� Initial membership matrices
mbers
luster.
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egion growing

Begin Define S as the seed set, A=0R�C as the arterial
centerline segments, R and C are the row and column of
the gray image respectively.

Do start from each element in S, if the homogeneity criterion is
satisfied for a candidate pixel, set its value to 1 in A and
merge this pixel into S.

Until no new pixel is added

End

Step 5: Execute the morphological operation of dilation on

R�C. The size of the dilation kernel was set to 7�7 pixels
epending on the estimation of the maximum vessel diameter.
he arteries and veins were then obtained by A=VN�AR�C
nd V=VN \A, respectively. Here, the notation ‘\’ represents
he difference between the two sets.

The FCM clustering method was implemented on the fea-
ure vectors consisting of the four couples of eigenspectra
mages on the vasculature. After considering the artery-vein
verlap and their relative location, i.e., whether the artery was
ocated on the top of the vein or vice versa, we set the number
f clusters to four in the FCM procedure. Implementing the
lustering on the vasculature has the advantage of reducing
he capillary disturbance to the arteries and veins, but it has
he disadvantage of losing some vessel segments, which were
bsent from the extracted vascular network. We also tried to
luster the spectral distributions in the whole image. However,
ix or more classes must be defined to separate arteries and
eins efficiently, taking account of the additional components
uch as arterioles, venules, and capillary regions for inter-
hanging oxygen and nutrients. If an active area is stimulated,
ore predefined clusters are required. The FCM algorithm

an converge to the same final clustering result when given
ifferent initial membership matrices in different runs. Figure
illustrates the convergence of FCM with different initial
embership matrices on one image data point.

ig. 7 �a� Spectral amplitude distributions of RF, F1, F2, and HF. �b� P
d� Artery-vein separation result. The red and blue regions represent a
ournal of Biomedical Optics 036025-
3 Results

A sampling cortical image �80�80 pixels� sequence was first
adopted to validate the separation method. This sequence con-
tained three main pieces of vessels, including both arteries
and veins. Arterial seeds were obtained using the FCM clus-
tering procedure from the amplitude and power-ratio map-
pings of RF, F1, F2, and HF 	see Figs. 7�a� and 7�b�
, and
then the arteries and veins were identified from the vascular
network using the region-growing method. The separation re-
sults are shown in Fig. 7�d�, where the red parts are arteries
and the blue parts are veins. Figure 7�c� shows the raw gray
image.

The separation results from the sampling cortical image
validated the five steps of the separation procedure described
above. We applied this procedure to the other cortical images
with more arteries and veins. Figure 8 shows one example
result of the separated arteries and veins. Four veins labeled
V1 through V4 and five arteries labeled A1 through A5 	see
Figs. 8�a� and 8�b�
 were extracted by the FCM and region-
growing methods using the spectral amplitude and power ratio
images of RF, F1, F2, and HF, as well as the corresponding
vascular network. All the separated arterial and venous seg-
ments, plotted in red and blue, respectively, are shown in Fig.
8�c�. The separation result with the arterial and venous cen-
terline superimposed on the raw cortical image is shown in
Fig. 8�d�. We marked two typical misjudgments of the vessel
types as C1 and C2 	see Fig. 8�d�
 and will discuss them
below. Ground-truth data were obtained from the 12 cortical
gray images by the physiological expert, who manually la-
beled significant vessels and indicated their types. The vessels
whose type exhibited ambiguity were excluded in the ground-
truth data. The separation results were compared against the
ground-truth data to estimate the performance. The true posi-
tive rate �TPR� was computed by the total length of the
ground truth arterial/venous segments divided by the total
length of the correctly classified arterial/venous segments.
The sum of the true positive rate and misclassification rate
was 1 for one vessel type.21 The TPR of our separation
method reached 97.7% for the arteries and 98.4% for the
veins. The misclassification of arteries as veins was 2.3%, and

tio distributions of the four eigenfrequencies. �c� Raw cortical image.
and veins, respectively. �Color online only.�
ower-ra
rteries
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he misclassification of veins as arteries was 1.6%.
Following the artery-vein separation, the power spectral

ensity of the pixel sequences in the arteries, veins, and cap-
llary bed were estimated by MTM to compare their oscilla-
ional distribution characteristics in the frequency domain. In
he arterial regions, the power spectra of F1 and HF were
ignificantly larger than those in the venous regions, while the
ower spectra of RF and F2 had greater values in the veins 	as

ig. 8 Example result of artery-vein separation using the FCM cluster-
ng approach and region growing method. �a� Venous centerline seg-
ents labeled as V1, V2, V3, and V4. �b� Extracted arterial centerline

egments labeled A1 through A5. �c� Artery-vein contrast image: red
arts represent arteries, blue parts represent veins, and cyan pixels
how the overlapping parts of arteries and veins. �d� Superimposition
f arteries and veins on the raw gray image. The two typical limita-

ions in the artery-vein separation results are denoted by C1 and C2.
he points marked by C1 represent the first limitation where arterial

ragments belonging to the same artery were divided into pieces by
arger veins. The points marked by C2 represent the second limitation,

misjudgment of arterial segments. �e� Estimated power spectrum in
rterial, venous, and capillary bed regions. The black line represents
ower spectra in the capillary bed, the blue line represents power
pectra in venous regions, and the red line represents power spectra in
rterial regions. �Color online only.�
ournal of Biomedical Optics 036025-
shown in Fig. 8�e�
. The three mean time courses were nor-
malized before the spectrum estimation. The spectrum in the
capillary bed displayed a median value compared with those
in the arterial and venous regions, which may be explained by
the contribution of the remaining arterioles and venules. Over-
all, these three spectral densities suggest that the different
oscillational characteristics may provide useful information
for the detailed hemodynamic analysis by separating arteries
and veins.

The veins separated by using the venous maximal RF
power in the region-growing procedure are also shown in Fig.
9 for comparison. Some small veins were missed with this
strategy, which presented a relatively weak performance in
contrast with the approach above. Hence, we chose the sub-
traction strategy to obtain the veins.

4 Discussion
The artery-vein separation method used in this study had two
limitations, as marked in Fig. 8�d�. First, the area enclosed by
C1 contained typical artery and vein crossover points, termed
break points. In C1, the arterial fragments, which factually
belonged to the same artery, were divided into two more parts
by the thick veins lying over the arteries. In some situations, it
is important to connect the adjacent arterial fragments that are
divided by the veins for functional brain mapping analysis or
hemodynamic modeling. In this case, because the directions
of the two arterial parts were very close, it was feasible to link
the two parts together using an image-processing method.
However, if an artery travels below the vein for a distance and
its direction alters significantly on the other side of this vein,
it would be a challenging problem to link the arterial frag-
ments together unless certain heuristic information has been
given. The second limitation of the vessel-type separation is
illustrated in the area marked by C2. C2 was located at the
crossover regions of the arteries and veins with abundant ar-
terioles. One vessel part at the inner top of C2 was judged to
be an artery and the other part at the inner bottom of C2 to be
a vein. In C2, there were many small arterioles and venules
located nearby, and their inevitable interference with the
neighboring major arteries and veins likely resulted in mis-
judgments of the vessel types.

We attempted to separate the arteries and veins using the
phase distribution of the four eigenfrequencies, as shown in

Fig. 9 Comparison of the separated veins with two strategies. �a�
Venous centerline extracted by the region-growing strategy. �b�
Venous centerline extracted by the subtraction strategy.
May/June 2010 � Vol. 15�3�8
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ig. 10. In the phase distribution of RF, both the arteries and
eins exhibited a bilateral antiphase, which provided little
ontribution to the vessel-type separation but was useful for
essel extraction. Fortunately, phases of F1 and HF exhibited
ignificant differences between the regional arteries and veins.
he phase maps of F1 and HF depicted a bilateral antiphase
istributed along all the vessels. However, the phenomenon of
ilateral antiphase in the arteries was altered section by sec-
ion, i.e., the bilateral phases in one section were the reverse
f the neighboring section, which was likely caused by the
rterial wiggle. In contrast, the phases in the veins were main-
ained almost constant throughout all sections along the two
ides of the vessels. This was mainly caused by the RF vaso-
otion. Therefore, based on these features, we could deter-
ine whether the vessel was an artery or not. However, the

hase distribution of F2 provided information mainly in small
essels; due to the limited spatial resolution, the very small
essels were difficult to correctly identify.

The optical intrinsic signals captured from rats anesthe-
ized by pentobarbital sodium also had four significant fre-
uencies in the domain of 1�7.5 Hz �data not shown�, which
s in accordance with the spectral distribution of signals from
ats anesthetized by urethane. Thus, overall the results from
he present study suggest that the four eigenfrequencies rely
n only the physiological state of the animal, and are intrinsic
hysiological oscillations. The RF and HF were relatively
tronger in veins and arteries than in other small vessels,
hereas F1, and especially F2, exhibited a relatively high

mplitude in small vessels, including some in the deeper lay-
rs of the cerebral cortex. In this sense, RF and HF were the
ominant elements for the separation of arteries and veins.
he duration of image acquisition was set to 40 s in this
ork, which ensured an adequate frequency resolution for RF,
1, F2, and HF. However, the 40-s duration was not critical
or artery-vein separation. A shorter duration can be feasible
s long as it provides the proper frequency resolution. The
inimum duration would vary for individuals and their physi-

logical state during the experiments.
The proposed method is distinct from prior work applied to

etinal imaging and MRA. Almost all the prior work identified
rteries and veins by utilizing the color or intensity informa-
ion of the vessels. The performance of the dual-wavelength

ethod21 was reported to be 97% and 90% accuracy for the
etinal arteries and veins, respectively. The performance of
ur method reached 97.7% and 98.4% for the cerebral cortical
rteries and veins, respectively, by utilizing the signal spectral
eatures. We believe that the performance of our artery-vein
eparation method could be further improved under multiple-
avelength illumination. Nevertheless, applying our proposed
ethod to retinal images would be a challenging task due to

Fig. 10 Spectral phase maps of �a� RF, �b� F1, �c� F2, and �d� HF.
ournal of Biomedical Optics 036025-
the problem of eye motion and blinking during the acquisition
of a series of images.

Though our method works on vessels with considerable
width, its success is limited on very thin arterioles and
venules. Very thin vessels with a width of one pixel �
�12 �m� or so are difficult to extract from the cortical gray
image. For thin vessels, a successful classification method de-
pends on the reliable extraction of the vessel hierarchy in
vasculature and accurate labeling with their parent vessels.

5 Conclusion
The artery-vein separation method proposed in the present
study was achieved using the spectral amplitudes and power
ratios of the intrinsic physiological oscillations of RF, F1, F2,
and HF. Each of the four feature frequencies was significant
�F-test, p�0.05�. The amplitudes and power ratios of the four
frequencies in all the pixels constituted the feature vector,
which was clustered using the FCM method to find the arterial
seeds. By combining the extracted vessel network, this
method was able to separate arteries and veins by 2-D optical
imaging of intrinsic signal. The separation method was useful
for hemodynamic modeling in different vessel types and may
be valuable for cerebral surgery or diagnosis of vascular dis-
eases by arterial morphological analysis. This method might
also be extended to the identification of vessel types in depth-
resolved optical imaging and focusing deeper into the cerebral
cortex. A potential future study is to investigate the distribu-
tions of other intrinsic physiological signals, such as low-
frequency oscillations, and the analysis of their power spectral
differences in arteries and veins with optical imaging of in-
trinsic signal.
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