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Abstract. Birefringent media, like biological tissues, are usually as-
sumed to be uniaxial. For biological tissues, the influence of linear
birefringence on the scattering phase function is assumed to be ne-
glectable. In order to examine this, a numerical study of the influence
of linear birefringence on the scattering phase function and the result-
ing backscattering Mueller matrices was performed. It is assumed that
the media consist of spherical scattering particles embedded in a non-
absorbing medium, which allows us to employ the Lorenz-Mie theory.
In the Monte Carlo framework, the influence of linear birefringence
on the components of the electric field vector is captured through the
Jones N-matrix formalism. The Lorenz-Mie theory indicates that a
given linear birefringence value �n has a bigger impact on the scat-
tering phase function for large particles. This conclusion is further
supported by Monte Carlo simulations, where the phase function was
calculated based on the refractive index once in the ordinary direction
and once in the extraordinary one. For large particles, comparisons of
the resulting backscattering Mueller matrices show significant differ-
ences even for small �n values. © 2010 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.3503475�
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Introduction

ight scattering and the modeling thereof plays an important
ole for a wide range of scientific topics and engineering ap-
lications ranging from atmospheric research to medicine. It
as been demonstrated that certain properties of a turbid me-
ium can be determined from measurements of reflected po-
arized light.1–8 This kind of diagnostics, however, is based on
everse engineering, which relies on accurate and efficient
imulation tools. Two major theories exist to describe such
henomena. The more rigorous approach �analytical theory� is
ased on Maxwell’s electromagnetic equations, but due to its
athematical complexity and associated high computational

ost, the simpler and computationally more efficient transport
heory is preferred for many applications. This is based on a
ector Boltzmann equation for the Stokes vector, which de-
ermines light intensity and polarization state as a function of
osition, propagation direction, and time. An established ap-
roach to solve this equation is the Monte Carlo method,
here a large number of computational particles with indi-
idual properties are employed to represent the Stokes vector
istribution. One possibility is to assign a Stokes vector, po-
ition, and propagation direction to each particle and use the
o-called Stokes-Mueller formalism to evolve these
roperties.4–7 In another equivalent approach, which is

ddress all correspondence to: Miloš Šormaz, Swiss Federal Institute of Tech-
ology Zürich �ETH�, Institute of Fluid Dynamics, Sonneggstrasse 3, 8092
ürich, Switzerland. Tel: 41-44-632-3756; Fax: 41-44-632-1147;
ilos.sormaz@ifd.mavt.ethz.ch
ournal of Biomedical Optics 055010-
adopted in this paper, the evolution of complex electric field
vectors is computed for each particle.9

Recently, there is a large interest in applying polarized
light to examine properties of biological tissues.1–3,10 Due to
anisotropy of the tissue structure and due to the presence of
chiral molecules �e.g., glucose and proteins�, effects such as
linear birefringence and optical activity have to be incorpo-
rated into the Monte Carlo methods. The usual assumption
regarding linear birefringence is that a tissue is uniaxial,
which means that there exists only one axis of anisotropy. The
main axis along which the refractive index differs from those
along the other main directions is called the extraordinary
axis. Note that the ordinary axes along which the refractive
index is uniform are perpendicular to the extraordinary axis.
In most biological tissues, the birefringence value �n=ne
−no �difference between refractive indicies ne and no along
the extraordinary and ordinary axes, respectively� is small
��n�0.01� and, e.g., in Refs. 1 and 2, where birefringence
was modeled, the assumption that it has no significant influ-
ence on the scattering phase function was adopted. However,
the effect of linear birefringence on the components of the
electric field vector between scattering events is captured by
the Jones N-matrix formalism as described in Refs. 2 and 11
�retardation�. In this paper, we want to examine the impact of
�n on the backscattering Mueller matrices. Assuming spheri-
cal scattering particles embedded in a nonabsorbing, homoge-
neous, isotropic medium allows us to employ the Lorenz-Mie

1083-3668/2010/15�5�/055010/11/$25.00 © 2010 SPIE
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heory for the computation of the phase functions. While it is
ot straightforward to also take anisotropic background media
nto account, it is shown how the scattering phase function
lters if the refractive index along the extraordinary instead of
he ordinary axis is used for its computation. From theory, it
lso follows that the same value of �n has a stronger impact
n the scattering phase function as the radius of the scattering
articles grows.

In Sec. 2, the governing equations and some basic theory
re presented together with the method for modeling linear
irefringence. In Sec. 3, validation and computational studies
re presented, and last, conclusions are given in Sec. 4.

Theory
n the transport theory for polarized light, one has to consider
vector Boltzmann equation, which reads

dI�x,s,�,t�
ds

= − �tI�x,s,�,t� +
�s

4�
�

4�

M�s,s��I�x,s�,�,t�d��,

�1�

here I�x ,s ,� , t� is the Stokes vector, x the position in physi-
al space, s the propagation direction, � the wavelength, and t
he time. The vectors s and s� form a so-called scattering
lane, for which the single-scattering Mueller matrix M�s ,s��
s defined. Note that M�s ,s�� describes the interaction be-
ween the electromagnetic wave and an isolated particle; a
etailed description of the single-scattering Mueller matrix
an be found in Ref. 12. Extinction and scattering coefficients
re denoted by �t and �s, respectively. A single scattering
vent requires rotation of the Stokes vector I= �I ,Q ,U ,V�T

nto the scattering plane, and its multiplication with the 4
4 single-scattering Mueller matrix is required. The compo-

ents of the Stokes vector are defined as

I = ElEl
* + ErEr

* = al
2 + ar

2,

Q = ElEl
* − ErEr

* = al
2 − ar

2,

U = E
l
*Er + ElEr

* = 2alar cos �, and

V = − i�E
l
*Er − ElEr

*� = 2alar sin � , �2�

here El and Er are the complex parts of the phasors El
al exp�−i�t− i�0�, and Er=ar exp�−i�t− i�0− i��. Here, El

nd Er are the parallel and perpendicular components of the
lectric field vector with respect to the scattering plane. The
hase difference between Er and El is denoted by �, al= �al�
nd ar= �ar� are the amplitudes of El and Er, �=2�c /� is the
requency, and �0 is the phase of El at t=0 �c is the speed of
ight�.

The change of the electric field vector components El and

r, which are in fact the Jones vector parameters, has to be
omputed at every scattering event; a complete description of
he method can been found in Refs. 9 and 13. Note, however,
hat the Stokes vector can be computed from El and Er at any
ime for any scattering plane.
ournal of Biomedical Optics 055010-
2.1 Monte Carlo Framework for Polarized Light
If the vector Boltzmann Eq. �1� is solved with a Monte Carlo
method, a large number of particles has to be employed. To
evolve a particle, first the random time �ts until the next
scattering event has to be sampled assuming exponential dis-
tribution with expectation 	s=1 /c�s. The new position then
becomes x̂
+1= x̂
+cŝ
�ts, where x̂ and ŝ are particle position
and propagation direction, respectively. The superscript 
 de-
notes the state after 
 collisions. Consistently, the particle
clock time t̂ is updated as t̂
+1= t̂
+�ts, and its weight ŵ is
decreased by the absorbed energy �ŵ= �1
−exp�−c�a�t̂s��ŵ
. In order to compute the scattered propa-
gation direction ŝ
+1, which together with the incident propa-
gation direction ŝ
 defines the scattering plane, the scattering
angles � and � have to be sampled from a joint probability
density function given as

p��,�� = P11��� + P12����Q cos�2�� + U sin�2���/I , �3�

where P11��� and P12��� are the elements of the single-

scattering Mueller matrix. Then, Êl and Êr of the particle are
changed as described in Ref. 9, whereas the new phasors of

the particle, i.e., Êr

+1 and Êl


+1, point in the direction of
ŝ
+1� ŝ
 and �ŝ
+1� ŝ
�� ŝ
+1, respectively. Note that not all
particles experience the same number of collisions, and it is
important to synchronize them. The local coordinate systems
of all detected particles are first rotated into a so-called labo-
ratory coordinate system, and then the Stokes vector is com-

puted from the phasors Êl and Êr.
Last, in order to correctly capture effects at the interface

between two media with different refractive indicies,
Fresnel’s and Snell’s laws were implemented. An implemen-
tation of surface effects in the case of unpolarized light, where
the scalar Boltzmann equation is solved, is described in Ref.
14. A nice description of the physics of light crossing an in-
terface can be found in Refs. 15. Implementation in the Monte
Carlo framework was already described in Refs. 16 and 17.

2.2 Linear Birefringence in a Monte Carlo
Framework

Media with anisotropic structure cause light to experience lin-
ear birefringence. Here, uniaxial media with a single axis of
anisotropy are considered. The birefringence magnitude is de-
fined by �n=ne−no, where ne and no are the refractive indi-
cies along the extraordinary and ordinary axes, respectively.
The Monte Carlo method was extended to include the effect
of linear birefringence through the Jones N-matrix formalism.
Here, we assume that linear birefringence has no effect on
reflection and transmission of light at the medium interfaces
and focus on its impact on the scattering phase function.

The refractive index is a function of the angle  between
the photon’s propagation direction s and the extraordinary
axis b, and it is given by the expression

n�� =
none

�ne
2 cos2  + no

2 sin2 �1/2 . �4�

As the photon propagates between two successive scattering
events, its polarization changes due to retardation � caused
LB

September/October 2010 � Vol. 15�5�2
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y the difference in refractive indicies �n��=n��−no, i.e.,

�LB = �n��
2�d

�
, �5�

here d is the traveled distance. As described in Ref. 2, the
hoton’s reference frame must be rotated first such that al
ecomes parallel with the projection b� of the extraordinary
xis onto the al−ar plane. Note that this rotation of the refer-
nce frame changes only the orientation angle of the polariza-
ion ellipse; the ellipticity stays the same. Now, the phasors El
nd Er are expressed such that the M-matrix can be em-
loyed, i.e., the complex parts of the phasors change between
wo scattering events as

Fig. 1 Simulation setup for the validation test cases.
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ig. 2 Stokes vector components for �s=30 cm−1 detected by �a� det
xperimental results of Ref. 2, respectively. Dashed-dotted lines are
epresent the V, U, and Q components of the Stokes vector, respectiv
ournal of Biomedical Optics 055010-
�6�

The calculation of the M-matrix elements is provided in the
next section.

2.3 Jones N-Matrix Formalism

Details about this method can be found in Refs. 11, but for
completeness here, the most important part is described. The
effect of linear birefringence over an infinitely small optical
path segment can be described by the so-called differential
N-matrix and integration along the trajectory between two
scattering events leads to the 2�2 M-matrix. Since we trace
the phasors El and Er instead of the Stokes vector, the
M-matrix can directly be applied. In our study, the depolar-
ization effect occurs only due to multiple scattering, i.e., no
depolarization occurs between scattering events.

The N-matrix for linear birefringence is given as

N�g0� = �n1 n4

n3 n2
� , �7�

where g0=��n /� is the retardation per unit distance. If a
photon’s reference frame is chosen such that al is parallel to
b�, one can write

(b)
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and �b� detector 2. Solid and dashed lines represent numerical and
ed with Scatter3D. Lines labeled with circles, squares, and asterisks
ector 1
obtain
ely.
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N�g0� = �ig0 0

0 − ig0
� , �8�

nd the elements of the M-matrix

M�g0� = �m1 m4

m3 m2
� , �9�

an be computed as

m1 = exp�TNz���n1 − n2�
cosh QNz

2QN
+ cosh�QNz�� ,

m2 = exp�TNz��− �n1 − n2�
cosh QNz

2QN
+ cosh�QNz�� ,

m3 = exp�TNz�
n3 sinh QNz

QN
, and

m4 = exp�TNz�
n4 sinh QNz

QN
, �10�

here TN and QN are defined as

TN =
n1 + n2

2
, and
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ig. 3 Stokes vector components for �s=60 cm−1 detected by �a� det
xperimental results of Ref. 2, respectively. Dashed-dotted lines are
epresent the V, U, and Q components of the Stokes vector, respectiv
ournal of Biomedical Optics 055010-
QN = � �n1 − n2�2

4
+ n3n4� . �11�

The parameter z in Eq. �10� denotes the distance between two
successive scattering events; i.e., the distance between two
collisions. In Ref. 2, it was shown how two effects like linear
birefringence and optical activity can be combined in one
N-matrix. Note that various polarizing effects can be modeled
with the N-matrix formalism. Since we consider only linear
birefringence, the elements m3 and m4 are equal to zero. Once
computed, the elements of the M-matrix are applied to the

complex part of the phasors Êl

 and Êr


 as

	Êl

,new

Êr

,new


 = 	m1 m4

m3 m2

	Êl


,old

Êr

,old


 . �12�

Note that the phasors Êl

 and Êr


 have to be rotated first as
described in Sec. 2.2 in order to apply Eq. �12�. Although the
use of the N-matrix formalism is unnecessarily complex for
this study, since only one polarization effect is present, i.e.,
linear birefringence, it is used to make the developed model
more flexible and extendable for future developments.

3 Numerical Studies
Before performing more relevant numerical investigations,
models and implementations of the linear birefringence and
surface effects �Fresnel and Snell laws� are validated. Then,

(b)
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ed with Scatter3D. Lines labeled with circles, squares, and asterisks
ector 1
obtain
ely.
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cattering phase functions are shown for particles with differ-
nt radii and refractive indices and for different refractive
ndices of the background medium, reflecting the difference
n between the refractive indices along extraordinary and
rdinary axes. For many applications, it is of interest to esti-
ate properties of scattering media by comparing measured

nd calculated Mueller matrices, which involves reverse en-
ineering. Therefore, it is essential that the Monte Carlo
ethod properly takes into account all relevant physical ef-

ects. So far, however, linear birefringence has typically been
eglected. In the following, we want to demonstrate that this
implification may be questionable. For this paper, �n
0.001 and �n=0.01 are considered, and it is shown, based
n the Lorenz-Mie theory, that the scattering phase functions
ased on ne and no differ significantly, thus indicating that �n
hould not be ignored.

.1 Validation
he Monte Carlo implementation described in the previous
ection was validated with experimental data.2 The experi-
ental and numerical results published in Figs. 5 and 6 of
ef. 2 were kindly provided by the first author thereof. The
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imulation setup is shown here in Fig. 1. A turbid medium is
lluminated with circularly polarized laser light �I
�1,0 ,0 ,1�T� of wavelength �vac=632.8 nm propagating in

he positive x3-direction, entering the turbid medium at the
oint �2, 0.5, 0�. All geometrical dimensions are in cm, and
he medium size is 4�1�1 with the extraordinary axis b
arallel to the x1 axis of the global coordinate system �see Fig.
�. The detectors have circular shape with an area of 1 mm2,
nd their centers are at �2, 0.5, 1� �detector 1� and at �2, 0, 0.5�
detector 2�. The acceptance angle �angle between photon’s
ropagation direction s and surface normal� is 14 deg. Note
hat in Ref. 2, the same detectors were used in the experi-

ents, but for the numerical studies, detectors with a slightly
ifferent geometry �rectangular area with a surface area of
mm2� and an acceptance angle of 20 deg were considered.
he turbid medium, surrounded by air with refractive index of
, is composed of spherical scattering particles embedded in a
onabsorbing host medium, which allows us to employ the
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ig. 6 Test case 1: PDFs of deflection angle � for same values of
/�vac�1.587 and nsp=1.59, but nbg

o =no=1.33 �solid lines� and nbg
e

ne=1.331 �dashed lines�.
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ne=1.34 �dashed lines�. Note that plots �b� and �c� are enlargements
f plot �a� around the center with different magnification.
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Lorenz-Mie theory. The resolution to precompute and tabulate
the scattering phase function is � /N with N=1000. All
spherical particles have the same radius r=700 nm and the
same refractive index nsp=1.59. The background medium has
an ordinary refractive index of no=1.393, and the birefrin-
gence value �n=ne−no varies from 0 to 1.628�10−5. For
the computations presented here, if not mentioned otherwise,
the refractive index no was used to calculate the scattering
phase function; linear birefringence was considered only
through retardation �as in Refs. 1 and 2�. Two test cases were
considered: for the first, whose results are shown in Fig. 2, a
scattering coefficient of �s=30 cm−1 was chosen, and for the
second, whose results are shown in Fig. 3, �s was set to
60 cm−1. The number of simulated particles was 10�106 and
30�106 for the media with lower and higher scattering coef-
ficients, respectively. Again, note that in Ref. 2, the number of
simulated particles was 108.

Figures 2�a� and 3�a� represent results “measured” with
detector 1, while Figs. 2�b� and 3�b� show results for detector
2. In both figures, curves labeled with circles, squares, and
asterisks represent changes of the V, U, and Q components,
respectively, of the detected Stokes vectors as functions of
�n. Solid and dashed lines show numerical and experimental
results published in Ref. 2, while dashed-dotted lines repre-
sent results obtained with our method, i.e., with the code
Scatter3D.13,14,18,19 It can be observed that the results obtained
with Scatter3D are in the same range as the numerical results
published in Ref. 2. The small difference between the numeri-
cal simulations may be attributed mainly to the slightly dif-
ferent detector geometries.

For further validation, the backscattering Mueller matrix
computed with Scatter3D �see Fig. 4� was compared with the
one presented in Fig. 4�a� of Ref. 1, and very good agreement
was achieved.

3.2 Influence of Linear Birefringence on Phase
Function

For the numerical studies presented in this and the following
sections, the scattering phase functions were computed ac-
cording to the Lorenz-Mie theory, whose input consists of the
particle size parameter x=2�rn /� and the relative refrac-
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Fig. 8 Test case 2: PDFs of deflection angle � for same values of
r /�vac�1.587 and nsp=1.59, but nbg

o =no=1.33 �solid lines� and nbg
e

=ne=1.34 �dashed lines�.
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ive index nrel=nsp /nbg. While not included here, the influ-
nce of linear birefringence on the scattering phase function
ecomes apparent by comparing the scattering phase func-
ions computed with nbg=ne and nbg=no. Note, however, that
his comparison delivers only an indication of the error due to
eglecting this influence of linear birefringence, which can be
urther highlighted by comparing the corresponding back-
cattering Mueller matrices. Therefore, a domain of size
0ls�20ls�4ls �ls=1 /�s is the optical mean free path
ength� is considered. Here, the global coordinate system is
efined by the unit vectors e1

g, e3
g, and e2

g pointing in the di-
ections of b, the upper surface normal and e3

g�e1
g, respec-

ively. The local coordinate system of a particle is defined by
he unit vectors e1

p=e1
g, e2

p=�1 /2�e2
g−e3

g� and e3
p=�1 /2�e2

g

e3
g�. The incident laser beam intersects the medium surface

t its center at an angle of 45 deg and is characterized by the
lectric field vector Ei=cos��e−i�e1

p+sin��ei�e2
p, where 

�0,� /2� and �� �0,�� are uniformly distributed random
umbers. The corresponding Stokes vector of the incident la-
er beam �defined in the local coordinate system� is
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ig. 9 Backscattering Mueller matrix for test case 2 computed with
0.01�.
ournal of Biomedical Optics 055010-
�1,cos�2� , sin�2�cos�2�� , sin�2�sin�2���T, and the
Stokes vector of the reflected particles is defined in the system
with the unit vectors −e1

g, e2
g, and −e3

g. The number of simu-
lated particles was 108, and all reflected particles are sampled
on a structured 100�100 grid at the surface of the turbid
medium. Studies also reveal, as theoretically expected, that
the influence of linear birefringence is more prominent for
larger scattering particles and shorter wavelengths. Note that
in all simulations, the influence of linear birefringence on
reflection/transmission at the substrate surface was neglected.
For retardation, however, it was considered according to Eqs.
�4� and �5�.

For the first test case, phase functions for constant r /�vac
�1.587 and nsp=1.59, but two different values for nbg, i.e.,
nbg

e =ne=1.331 and nbg
o =no=1.33, were computed. Note that

this corresponds to �n=ne−no=0.001. It can be observed in
Fig. 5 that the difference between the two phase functions is
negligible. The probability density function of the deflection
angle � �normalized product of scattering phase function and
sin���� is plotted in Fig. 6.
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While the same r, �vac, and nsp as for test case 1 were used
n the second test case, �n was increased to 0.01, resulting in

bg
o =no=1.33 and nbg

e =ne=1.34. As can be observed in Figs.
and 8, the two resulting phase functions differ significantly.
The plots in Fig. 9 show the 16 components of the back-

cattering Mueller matrix computed with nbg=no on a 6ls
6ls patch on the surface centered around the incident point.

ote that the values of each matrix element were normalized
y the maximum value of the �1,1� component. The scattering
edium is the one used in test case 2, and more details are

rovided in Ref. 13. As can be seen by comparing Fig. 9 with
ig. 10, where no retardation is considered �isotropic me-
ium� but with same nbg=no, linear birefringence results in
ore diffuse patterns for all components except for �1,1�,

1,2�, �2,1�, and �2,2�. Note that the scattering coefficient �s
as the same in all directions. A quantitative comparison with

he backscattering Mueller matrix based on nbg=ne=1.34 for
he phase function computation is presented in Fig. 11, where
he normalized difference is shown for each of the 16 compo-
ents. In the calculations of both backscattering Mueller ma-
rices, �n=0.01 was used for retardation.
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Fig. 10 Backscattering Mueller matrix computed with r /
ournal of Biomedical Optics 055010-
Next, the difference between two backscattering Mueller
matrices �one based on nbg=no and one based on nbg=ne for
the computation of the scattering phase function� for scatter-
ing media having the properties of test case 1 is shown in Fig.
12. In both simulations, �n=0.001 was used for retardation.
As can be observed, the difference for the elements �1,2� and
�2,1� is less than 10%.

In order to look more closely at the difference between the
scattering phase functions based on nbg=no and nbg=ne, the
relative difference ���� computed as

���� =
�pno

��� − pne
����

pno
���

, �13�

where pno
��� and pne

��� are the scattered light intensities
���S1�2+ �S2�2� /2� at the angle � for nbg=no and nbg=ne, re-
spectively, is plotted in Fig. 13. The following parameters
were used for these investigations:

• Case 1: r=1000 nm, �n=0.001, �x�0.00997.
• Case 2: r=1000 nm, �n=0.01, �x�0.0997.
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• Case 3: r=100 nm, �n=0.01, �x�0.00997.
• Case 4: r=10 nm, �n=0.01, �x�0.000997.

ote that in all cases, �vac=630 nm and nsp=1.59. As ex-
ected, the average discrepancy

R =


i=1

N

����

N
, �14�

rows with the particle size �radius�, and for example, in case
, the average discrepancy of R�0.1080 results in a signifi-
ant difference between the two corresponding backscattering
ueller matrices �see Fig. 11�. On the other hand, for case 1,

he average discrepancy and the difference between the back-
cattering Mueller matrices are much smaller �see Fig. 12�.
n interesting effect can be observed in Fig. 13, which shows

hat for the same �x�0.00997 but different particle radii r
1000 nm �case 1� and r=100 nm �case 3�, the average dis-

repancies are R=0.0111 and R=0.0612, respectively.
Next, scattering phase functions are calculated for two test

ases with r /� �1.587 but n =2 �test case 5� and n
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−3ls

0

3ls
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ig. 11 Normalized difference between the backscattering Mueller m
ne=1.34 instead of nbg=no=1.33. In both simulations, �n=0.01 w
ifference of the components.
vac sp sp

ournal of Biomedical Optics 055010-
=2.5 �test case 6�. The refractive indices of the host medium
in ordinary and extraordinary directions are no=1.33 and ne
=1.34, respectively. The dependence of ���� on � is presented
in Fig. 14, and it can be seen that the average discrepancy R
does not necessarily grow with increasing relative refractive
index.

4 Conclusions
For light scattering in biological tissues, the influence of lin-
ear birefringence ��n�0.01� on the scattering phase function
is usually neglected, which was the motivation for the per-
formed study. It can be concluded that the influence of linear
birefringence in scattering phase function computations de-
pends on the particle size parameter x and the relative refrac-
tive index nrel. The difference in the scattered light intensity
governed by phase functions based on nbg=no and nbg=ne, as
the Lorenz-Mie theory shows, is larger for larger scattering
particles and also depends on the relative refractive index nrel.
Thus, not just the value of linear birefringence �n has to be
considered in order to neglect its influence on scattering, but
instead the comparison between two scattering phase func-
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ions has to be made. All this results in a variable so-called
verage discrepancy R, which reflects both dependencies and
uantifies the difference between two scattering phase func-
ions computed with nbg=no and nbg=ne. Note that the mod-
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ig. 12 Normalized difference between the backscattering Mueller
bg=ne=1.331 instead of nbg=no=1.33. In both simulations, �n=0.
ormalized difference of the components.
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eling of the effect of linear birefringence on a scattering phase
function would require an extension of the Lorenz-Mie theory
for an anisotropic refractive index of the background medium.
The present study is just an indication of the problem and
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hows errors produced if one neglects the influence of linear
irefringence on scattering. In this study, the proposed bound-
ry value for the average discrepancy R is 0.01. In all calcu-
ations of backscattering Mueller matrices, an influence of
inear birefringence on reflection/transmission at the sample
oundaries was neglected.

Birefringence is incorporated in our Monte Carlo frame-
ork through the Jones N-matrix formalism, and since we
eal with the components of the electric field vector El and

r, a 2�2 M-matrix can be directly applied. The implemen-
ation was validated with results from an established reference
efore numerical studies were conducted.

eferences
1. X. Wang and L. V. Wang, “Propagation of polarized light in birefrin-

gent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7�3�, 279–
290 �2002�.

2. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation
in multiply scattering media exhibiting both linear birefringence and
optical activity: Monte Carlo model and experimental methodology,”
J. Biomed. Opt. 12�1�, 014029 �2007�.

3. N. Gosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decom-
position for extraction of individual polarization parameters from
complex turbid media exhibiting multiple scattering, optical activity,
and linear birefringence,” J. Biomed. Opt. 13�4�, 044036 �2008�.

4. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A.
Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller
matrix to particle shape and thermodynamic phase,” Appl. Opt.
42�21�, 4389–4395 �2003�.

5. R. Lawless, Y. Xie, P. Yang, G. W. Kattawar, and I. Laszlo, “Polar-
ization and effective Mueller matrix for multiple scattering of light by
nonspherical ice crystals,” Opt. Express 14�14�, 6381–6393 �2006�.
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