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Abstract. Diffuse optical tomographic image reconstruction uses
advanced numerical models that are computationally costly to be
implemented in the real time. The graphics processing units (GPUs)
offer desktop massive parallelization that can accelerate these compu-
tations. An open-source GPU-accelerated linear algebra library package
is used to compute the most intensive matrix-matrix calculations and
matrix decompositions that are used in solving the system of linear
equations. These open-source functions were integrated into the exist-
ing frequency-domain diffuse optical image reconstruction algorithms
to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C
1060) with increasing reconstruction problem sizes. These studies indi-
cate that single precision computations are sufficient for diffuse optical
tomographic image reconstruction. The acceleration per iteration can
be up to 40, using GPUs compared to traditional CPUs in case of three-
dimensional reconstruction, where the reconstruction problem is more
underdetermined, making the GPUs more attractive in the clinical set-
tings. The current limitation of these GPUs in the available onboard
memory (4 GB) that restricts the reconstruction of a large set of opti-
cal parameters, more than 13,377. C©2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3506216]
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1 Introduction
Diffuse optical imaging has received heightened attention in
the last decade because of its capability to provide functional
images of the tissue under investigation using nonionizing near-
infrared light (600–1000 nm).1, 2 Specifically, imaging of brain
and breast has been the primary applications of diffuse optical
tomography.1–3 The critical step in obtaining these images is
estimating internal distribution of optical properties of the tis-
sue using the measurements made on the tissue boundary.4, 5

Because the scattering is the dominant mechanism for near-
infrared light (NIR) interaction with tissue, the estimation prob-
lem, also known as the inverse problem, is nonlinear, ill-posed,
and some times underdetermined.4 Thus, solving an inverse
problem necessitates the use of computationally intensive mod-
els. The computed data using these models are matched with the
experimental data iteratively in the least-squares sense to obtain
the optical properties of the tissue.4

The major challenge in terms of obtaining these optical
images in real time is the computational cost associated with
these advanced computational models, because these are used
repeatedly.2, 4, 6 These iterative techniques used in the inverse
problem relies on the calculation of modeled data and Jacobian
(or its variant) at each iteration to obtain an update of optical
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properties.4, 6, 7 Depending on the model used, these calculations
can span up to several hours, especially in three-dimensional
(3-D) cases.6, 8 There were attempts earlier to accelerate these
calculations by using parallel computers, which have been
shown to give a speedup of factor n, with n being the number of
parallel processors used.6 The limitation with the use of parallel
computers is the cost associated with achieving higher speedups
and also the complex approach in parallelizing these compu-
tational models. Here, we aim to take advantage of general
purpose graphics processing units (GPUs) in massively paral-
lelizing these calculations. This work specifically aims to present
accelerating the frequency domain diffuse optical image recon-
struction using a cost-effective (∼$1200) programmable GPU
(NVIDIA Tesla C 1060). This is achieved using an open-source
GPU-accelerated linear algebra library (CULA) that utilizes the
NVIDIA’s compute unified device architecture (CUDA).9

Earlier works have shown the parallel computation capabil-
ity of GPUs in performing high-speed Monte Carlo simulation
of photon propagation in tissue and proven to give a speedup of
∼100 for simple cases10, 11 and ∼10 in heterogeneous tissues12

when compared to the implementation on a modern central pro-
cessing unit (CPU). Also, the standard filtered backprojection
(Radon transform-based) algorithm used in computed tomog-
raphy (CT) has been shown to give a speedups of 100 com-
pared to standard CPUs.13 These kinds of massively parallel
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Table 1 Comparison of features of available CUDA-based numerical linear algebra packages along with their source.

Precision Sparse

Package Open Source Complex Arithmetic Single Double Real Complex Matrix Multiplication System Solvea Ref.

CULA Basic Yes Yes Yes No No No Yes Yes 16

CULA Premium/
Commercial

No Yes Yes Yes No No Yes Yes 17

Magma Yes Yes Yes Yes No No Yes‡ Yesb 18

Cusp Yes No Yes Yes Yes No No Yes 19

Jacketc No Yes Yes Yes No No Yes Yes 20

Cublas Yes Yes Yes Yes No No Yes No 21

GPULib No Yes Yes Yes No No Yes No 22

GPUmat Yes Yes Yes Yes No No Yes No 23

ViennaCL Yes No Yes Yes Yes No Yes Yes 24

aSolves for x in Ax = b.
bOnly for real cases.
cCULA is also part of Jacket.

programmable GPUs have been used in the context of optical
projection tomography and shown to give 300-fold acceleration
compared to traditional CPUs.14 For iterative algorithms that
are used in CT reconstruction, such as simultaneous algebraic
reconstruction, the reported speedups are 12-fold per iteration,
comparing GPU to CPU.15 The image reconstruction algorithms
that use Fourier transform or its variant have been shown to give
speedups on the order of 100 or more using GPUs, and the
reconstruction algorithms that mainly involve matrix compu-
tations have been shown to give speedups on the order of 10
or more.14, 15 The main aim of this work is to demonstrate the
parallel computing power of these GPUs for performing diffuse
optical tomographic image reconstruction.

Here, we used a finite element (FE) method (FEM)–based
computational model that solves the frequency-domain diffusion
equation (DE) requiring complex arithmetic. The number of
unknowns in the inverse problem will be equal to 2NN (NN

absorption coefficients and NN-diffusion coefficients), with NN

being the number of finite element nodes used in the FE mesh to
obtain the modeled data (described later). To obtain the modeled
data, Jacobian, and update of optical properties at every iteration,
a set of linear system of equations (order of 2NN) needs to be
solved along with the matrix-matrix multiplications (order of
2NN), which will take typically O[(2NN)3] operations. We will
show that these operations could be done in parallel using a
GPU (NVIDIA Tesla C 1060) to accelerate the diffuse optical
tomographic image reconstruction procedure.

As diffuse optical image reconstruction relies on numerical
calculations, specifically system solve (i.e., solving x in Ax = b)
and matrix multiplications. Several packages,16–24 listed in
Table 1, exist that provide options for carrying out the calcu-
lations on GPUs. The FEM-based forward models based on
frequency-domain DE results in sparse symmetric linear sys-
tem of equations (complex type). This, in turn, limits the use of
sparse numerical computations on GPUs in these cases (more

discussion to follow). The only package that is capable of deal-
ing with sparse system solve for the real type is Cusp,19 allowing
only matrix-vector computations. It will be shown that even with
the use of the full (nonsparse) matrices, the GPUs are capable
of given an acceleration of up to 7 (for completing a start-to-end
single iteration of the diffuse optical image reconstruction) com-
pared to CPU sparse computations. Note that the Linux-based
platform is used to carry out the computations performed in this
work.

2 Methods
2.1 Diffuse Optical Tomographic Image

Reconstruction
Diffuse optical tomographic image reconstruction is typically
performed using Newton-type algorithms, where the modeled
data [G(μ) with μ representing the set of optical properties] is
matched to the experimental data (y), iteratively, in the least-
square sense.4, 7 The most popular technique among the full
Newton-type algorithms is Levenberg–Marquardt minimiza-
tion, described in detail in Ref. 7. The FEM-based frequency-
domain diffusion model for the calculation of G(μ) is de-
scribed in Refs. 25 and 26; here, it is only briefly reviewed.
The frequency-domain DE is given by25

−∇ D(r )∇�(r, ω) +
(

μa(r ) + iω

c

)
�(r, ω)

= qo(r, ω), (1)

where �(r, ω) photon density (complex values) at position r for
the light modulation frequency of ω ( = 2π f, with f = 100 MHz).
The light source, represented by q0(r, ω), is modeled as isotropic
and c represents the speed of light in tissue. The absorption
coefficient is represented by μa(r) and the diffusion coefficient
by D(r), defined as
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D(r ) = 1

3[μa(r ) + μ′
s(r )]

, (2)

with μ′
s(r ) representing the reduced scattering coefficient. The μ

in this work represents [D(r); μa(r)]. A Robin (type III) boundary
condition is typically used to take care of the refractive-index
mismatch at the tissue boundary.27

In the FEM framework, the imaging domain is discretized
into linear triangular elements (for two dimensions) or linear
tetrahedral elements (for three dimensions) connected at NN ver-
tex nodes. Then the computational (forward) model for solving
the diffusion equation reduces to25, 26

K� = q, (3)

where K is known as the mass matrix with a dimension of
NN×NN (symmetric matrix) and is a function of μ [i.e., �

= K− 1q = F(μ)], with K assembled over all elements of the fi-
nite element mesh. q represents the forcing, including the source
term [q0(r,ω)] and the boundary condition.25 The modeled data
[G(μ)] is obtained by sampling of � at the measurement po-
sition [i.e., G(μ) = S{�} = S{F(μ)}, where S represents the
sampling matrix (containing source/detector positions) and F is
the forward model].7 Note that K is highly sparse (with a banded
structure in case of bandwidth-optimized FE meshes) and typi-
cally sparse matrix solvers are used to obtain �. This process of
solving for � [Eq. (3)] involves a decomposition method (itera-
tive procedure) preambled by a preconditioning step, because K
is a large sparse complex matrix with a high numerical condition
number.5, 25, 28 In this work, the Jacobi preconditioner (simplest
of all preconditioners) has been used, where the preconditioned
matrix (P) is a diagonal matrix consisting of diagonal values of
K.29, 30 The inverse of P (which is one over the diagonal values
of K) is left multiplied in Eq. (3) to form a better conditioned
linear system of equations. This results in an increased rate of
convergence in solving for �. The preconditioned linear system
of equations is given by

P−1 K� = P−1q, (4)

with P –1 defined as29, 30

P−1
i, j =

⎧⎨
⎩

1

Ki,i
if i = j

0 if i �= j.
(5)

Because the complex sparse arithmetic is not yet supported in
NVIDIA’s CUDA, the GPU implementation of the same is per-
formed by converting K to a full (nonsparse) matrix.

The most important steps pertaining to the image reconstruc-
tion procedure are given as a flowchart in Fig. 1. The iterative
image reconstruction procedure starts with an initial guess for
the optical properties (μ0) typically obtained using the calibra-
tion procedure of experimental data (y).31, 32 Using this μ0, the
forward model is solved to obtain G(μ) and, more importantly,
the Jacobian (J = ∂G(μ)/∂μ), which gives the rate of change
in the modeled data with respect to optical properties. J is typ-
ically obtained using the adjoint formulation,25 and the most
important computations pertained to the calculation of J are
given in Fig. 2. The computation times for each step (in per-
cent) in calculation of J with adjoint formulation is also given
in Fig. 2. It could be seen that calculation of J needs both �

and �* (adjoint fluence, obtained by interchanging the source

Fig. 1 Flowchart presenting the important steps involved in recon-
structing optical properties in diffuse optical tomography along with
associated computation time (in percent of total time per iteration). The
steps that used GPU-based computations are indicated with a double
arrow.

and detector positions) and typically takes ∼35% of time in the
preconditioning {i.e., calculation of P− 1K with the order of cal-
culations as O[(2NN)3]}, as both P− 1 and K are complex [for
the real case, it will be O(NN

3)].29 Obtaining � in Eq. (4) is
performed using LU decomposition, and the number of opera-
tions required are O(2 ∗ (2NN)3/3),29, 30 contributing to ∼25%
of total computation time (Fig. 2) taken for calculation of J.

As the Rytov approximation is used in the work, the fre-
quency domain data becomes, y = [ln(A); θ ], where ln(A) is
the natural logarithm of amplitude (A) and θ is the phase of
the frequency domain signal, making the J a real valued ma-
trix (dimension of 2NM×2NN, where NM is the number of
measurements).4, 7 The procedure involved in the calculation

Fig. 2 Flowchart showing the important computations for calculation
of the Jacobian ( J). The computation time in terms of percentage of
total time taken in calculation of J at each step is also indicated. Note
that the calculation of J accounts for 75% of the total time taken in
completing one iteration of diffuse optical image reconstruction (also
indicated in Fig. 1).
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Table 2 Specifications of GPU and CPU used in this work along with its limitation on finite element mesh size (based on the available memory) in
terms of number of nodes (NN).

Processing unit Model No. Cores Clock Rate (GHz)
Cost

(in U.S. $) Memory (GB) NN allowed

GPU NVIDIA Tesla C1060 240 1.33 ∼1200 4 13,377

CPU Intel Xeon E 5410 8 2.33 ∼2400 4 13,377

of real valued J using complex � is given in Ref. 25. Note
that the calculation of J [and G(μ)] consumes ∼75% of total
computation time taken for completing a single iteration (see
Fig. 1). To obtain an update of the optical properties (�μ), the
Levenberg–Marquardt (LM) minimization33, 34 is used and the
objective function for this minimization scheme is given as33, 34

� =‖ y − G(μ)‖2 . (6)

The objective of the LM minimization scheme is to match y with
G(μ) in the least-squares sense, by changing μ. The details of
LM minimization scheme are discussed in Ref. 7. The update
equation (for getting �μ) for the LM minimization becomes7

[J T J + λI ] �μ = J T[y − G(μ)], (7)

where JT represents the transposed J and I is the identity matrix.
λ is the regularization parameter, chosen empirically (starts at
10 multiplied by the maximum of the diagonal values of JT J
and reduced by a factor of 100.25 at every subsequent iteration).
Computing �μ with the use of J and G(μ) typically consumes
20% of total time in any given iteration (see Fig. 1). LU factor-
ization is used in solving Eq. (7) to obtain �μ, with the number
of operations of order O(2 ∗ (2NN)3/3).29, 30 The procedure for
calculation of J, G(μ), and subsequently �μ is repeated un-
til the relative difference in the objective function [�, Eq. (6)]
does not improve by >2% (the same is indicated in Fig. 1).
Because 95% of total time per iteration is spent on calculation
of J, G(μ), and �μ, the emphasis of this work is to accelerate
these computations, which involve either matrix-matrix multi-
plications [calculation of P− 1K in Eq. (4) and JT J in Eq. (7)]

and solving the system of linear equations [Eqs. (4) and (7)],
using GPUs.

2.2 GPU-Based Diffuse Optical Tomographic Image
Reconstruction

The GPU typically consists of 100–200 stream processors that
employ single-instruction multiple thread execution to give mas-
sive parallel computation power.35 The stream processing uses
multiple processors to execute the same kernel of code in paral-
lel on a large set of data.35 As this processing of large data sets
is executed in parallel, the GPU accelerates the computation in
cases such as large matrix computations, including multiplica-
tions and decompositions.

In this work, a NVIDIA GPU, which is CUDA enabled, is
used in parallelizing these matrix computations. The specifi-
cation of this GPU card along with the CPU that is compared
against it is given in Table 2. As indicated earlier, the matrix com-
putations are carried out using CULA. The NIRFAST package26

is used for the frequency-domain diffuse optical tomographic
image reconstruction. Because NIRFAST is built on Matlab-
based routines,26 the CULA functions (written in C, which use
CUDA libraries9) are wrapped to form Matlab executable (mex)
files (details are given in Ref. 36). The routines that are used in
this work along with examples of its usage are given in Table 3.
Note that in this work only the basic package of CULA, which
is open source, is used. This basic version of the CULA package
is limited to single precision, which is sufficient for the diffuse
optical tomographic image reconstruction (also shown later).

As indicated in Fig. 1, the developed GPU routines (given in
Table 3) based on CULA are used at six instances in a single

Table 3 GPU-based Matlab executable (mex) CULA functions that are used in this work.

Function Description Usage

culaCgemm Computes the multiplication of two
complex matrices (C = A*B)

[C ] = culaCgemm(A,B); where matrices
A and B are of type complex and single
precision.

culaCsv Computes the solution to a complex
linear system of equations (Ax = B) using LU
decomposition

[x] = culaCsv(A,B); where matrices A and
B are of type complex and single
precision.

culaSgemm Computes the multiplication of two real
matrices (C = A*B)

[C ] = culaSgemm(A,B); where matrices A
and B are of type real and single precision.

culasv Computes the solution to a real linear
system of equations (Ax = B) using LU
decomposition

[x] = culasv(A,B); where matrices A and
B are of type real and single precision.
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iteration of the image reconstruction procedure. These instances
are listed as follows:

1. Computation of P− 1K with CulaCgemm for the left-
hand side of Eq. (4)

2. Computation of � with CulaCsv in Eq. (4)

3. Replace K with K* (adjoint mass matrix) in instance-1
(see Fig. 2)

4. Computation of �* ( adjoint fluence) with CulaCsv in
P− 1K*�* = P− 1q* (see Fig. 2)

5. Computation of JT J with CulaSgemm for the left-hand
side of Eq. (7)

6. Computation of �μ with culasv in Eq. (7)

Note that only in the case of matrix-matrix multiplications,
CULA functions (CulaSgemm and CulaCgemm) are used. In
the cases of matrix-vector multiplications, these functions re-
sulted in an insignificant acceleration (speedup of ∼1.1). More
over, in the case of GPU implementation, even though K with
K* (along with P− 1) are sparse, these matrices were converted
to full before using them at the first four instances, because com-
plex sparse arithmetic is not yet supported in NVIDIA CUDA
(see Table 1).

The main limitation in carrying out these large matrix-
matrix computations on the GPU has been the available onboard
memory,35 and this limitation puts a constraint on the FE mesh
size (in turn, on the number of optical properties) that could be
used for the GPU-based calculations. These sizes in terms of
number of nodes (NN) are given in the last column of Table 2.

2.3 GPU and CPU Computations
Initially, because single-precision CULA functions are used, a
set of simulations were carried out using both single- and double-
precision diffuse optical tomographic image reconstruction to
show that single-precision calculations are sufficient. The 2-D
FE circular mesh centered around the origin was used for this
purpose. This 2-D traingular mesh had 4903 nodes connected to
9576 linear triangular elements. The circular domain had a radius
of 43 mm, and 16 source/detector equidistant fibers were placed
on the boundary of the domain. When one fiber is used as source,
the other fibers act as detectors, resulting in NM of 240 (16×15).
The source was placed at one mean transport length inside the
boundary and had a Gaussian profile with full width at half
maximum of 3 mm to mimic the experimental conditions.37 The
background optical properties of the mesh were μa = 0.01 mm–1,

μ′
s = 1 mm–1 with uniform refractive index of 1.33. An absorp-

tion anomaly with a contrast of 2:1 (i.e., μa = 0.02 mm–1) of
diameter 15 mm was placed close to the boundary [at (30,0)]
to mimic the tumor.38 Synthetic experimental data were gener-
ated using this mesh, and noise of 1% was added to this data to
generate y. The background optical properties were used as μ0

(Fig. 1). This image reconstruction procedure is carried out over
15 iterations using the LM minimization procedure. The differ-
ence in the L2-norm of the data-model misfit [δ = y − G(μ)]
between the single and double precision procedures along with
the difference in the L2-norm of the estimated μ is compiled for
the comparative purposes.

The GPU-based matrix computations used full matrices (rep-
resented by GPU-Full for these type of computations). The
CPU-based matrix computations (involving instances 1–4 in
Section 2.2) were carried out using both sparse (represented
by CPU-Sparse) and full (represented by CPU-Full) matrices
for comparison purposes. Using these three different strategies,
namely GPU-Full, CPU-Full, and CPU-Sparse, the optical im-
age reconstruction procedure with varying sizes of FE meshes
is implemented in both 2-D and 3-D cases. For the 2-D (circu-
lar geometry) case, the variation in NN is from 1933 to 10249
and for the 3-D case (cylindrical geometry), it is from 4378
to 12695. The 2-D computations are carried out on the circular
imaging domain with similar specification given earlier for vary-
ing NN. In the 3-D case, similar to 2-D, a ring of equispaced 16
source/detector fibers placed at the center of the Z coordinate are
used for boundary data collection, leading 240 (16×15) number
of measurements (NM). The optical properties similar to the 2-D
test object were used, with the shape of the tumor as a sphere
(similar to a circular one in two dimensions). The 2-D meshes
were created using Matlab PDE tool box and the 3-D tetrhedral
meshes using NETGEN.39 The computation time per single it-
eration (start to end) is noted for all three strategies (GPU-Full,
CPU-Full, and CPU-Sparse) for comparative purposes in both
2-D and 3-D cases, separately. Because the NVIDIA Tesla C
1060 GPU card onboard memory is limited to 4 GB (Table 2),
imposing the upper limit of NN as 12,695 in the case of cylindri-
cal FE meshes considered here (constructing a FE mesh of the
exact size with NN as 13,377 was not plausible).

3 Results and Discussion
There are many potential CUDA (GPU)-based numerical linear
algebra packages that could be used to accelerate the diffuse
optical image reconstruction procedure, some of these along
with their features are listed in Table 1. With the need of matrix-
matrix computations and system solve leads to the choice of
CULA and Jacket from the ones listed in Table 1. Because
CULA basic16 has an advantage of being open-source, the same
is used in the presented work. Note that CULA is also part of
Jacket.20 Also, from the Table 1, it is evident that the complex
sparse arithmetic is not supported in CUDA.

The difference (in percent) in the L2-norms of the data-
model misfit (δ) and estimate optical properties (μ) with respect
to iteration number between single- and double-precision com-
putations using CPU are plotted in Fig. 3 for the test object
described in Sec. 2.3. It is evident from Fig. 3 that the maximum
difference in terms of percentage in either δ or estimated μ is
<0.005%, asserting the fact that single precision is sufficient
for carrying out the diffuse optical tomographic image recon-
struction computations. Because Rytov approximated data are
used in this work [i.e., using ln(A) rather than A] the single-
precision calculations were adequate. The main advantages of
single- over double-precision computations are twofold. First,
given the limitation on the available GPU/CPU memory, diffuse
optical tomographic image reconstruction could be performed
on meshes twice as large. Second, the basic version of CULA
(open source), which has only single-precision capability, could
be used to perform the GPU computations.

The optical images obtained with integration of CULA-
based functions (Table 3 with the instances given in Sec. 2.2)
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Fig. 3 Difference (in percent) in the L2 norm between the single- and double-precision computation over the iterations in (a) data-model misfit (δ)
and (b) estimated optical properties (μ).

into the diffuse optical image reconstruction procedure using
the test case described earlier were identical (visually and nu-
merically) compared to images obtained using single-precision
CPU-based implementation. The observed difference (in per-
cent) in the L2-norms of the data-model misfit (δ) and estimate
optical properties (μ) between the GPU implementation (with
CULA basic) and traditional CPU implementation (with double
precision) are same as the observed values plotted in Fig. 3.

A 2-D test case reconstruction results along with the target
distribution using the three strategies (CPU-Full, CPU-Sparse,
and GPU-Full, discussed in Sec. 2.3) are given in Fig. 4. The
number of iterations to converge to a solution for each strategy
is equal to 10. Obtained μa and μ′

s distributions were correlated
to find a similarity measure among the three strategies, resulting
in a correlation coefficient of 1 (with in the limits of single
precision), asserting that the reconstructed results are identical.

Fig. 4 Two-dimensional reconstruction results obtained with 1% noisy
data using three strategies—CPU-Full, CPU-Sparse, and GPU-Full—
discussed in this work. The target 2-D distribution is given in column 1
for (a) μa images and (b) μ′

s images. The number of nodes along with
computational time taken for each strategy in a given iteration is given
in Table 4.

The time taken per iteration [start to end, including data trans-
fer between CPU (host) and GPU (device) and vice versa] on
GPU (NVIDIA Tesla C 1060) and CPU (Intel Xeon E 5410)
for different mesh sizes both in two and three dimensions were
plotted in Fig. 5 for the three strategies (GPU-Full, CPU-Full,
and CPU-Sparse, discussed in Section. 2.3). In the 2-D case,
it is clear from Fig. 5(a) that the computation time per itera-
tion increases with increasing NN for all three strategies, with
CPU-Full taking the maximum time. Among the three strate-
gies, GPU-Full took the shortest computation time. As stated
earlier, because sparse complex arithmetic is not supported
in NVIDIA CUDA, the GPU-Sparse (GPU-based computation
using sparse representation of matrices for instances 1–4, de-
scribed Section 2.2) strategy was not attempted. Comparing the
three strategies in this 2-D case, the speedup (acceleration) with
the use of GPU was up to 7.5 comparing CPU-Full to GPU-Full.
The maximum speedup has been lowered to 2 in comparing
CPU-sparse to GPU-Full. For the 3-D case [Fig. 5(b)], a similar
trend in the 2-D case was observed with the computation time
per iteration being higher than 2-D case for the same NN. In the
3-D case, the speedup (acceleration) with the use of GPU was
up to 40 in comparing CPU-Full to GPU-Full, and was lowered
to 7 in comparing CPU-sparse to GPU-Full.

The main emphasis of this work is to prove that the GPU
computing offers a considerable speedup compared to CPU
computing and the comparison has been only performed by
the time taken per iteration. The diffuse optical image recon-
struction typically requires about 10 iterations, and for a typical
three-dimensional problem (Table 4), the least total time taken
by the CPU (CPU-sparse) to converge to a solution is 290 min,
and 48 min for GPU. The gain in terms of total computation time
is significant in nature (comparing ∼5 h to 0.75 h), making the
GPU computing very attractive to be used in the real time, espe-
cially in multiwavelength cases (the problem gets scaled by the
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Fig. 5 Plots showing the computation time taken for each strategy [indicated in the legend of (a)] per single iteration versus mesh size (node number,
NN) for (a) the 2-D case and (b) 3-D case. The strategies are explained at the end of Section 2.3. The specifications of CPU and GPU are given in
Table 2.

number of wavelengths), where the aim is to obtain functional
images.

Even though it is not possible to attempt sparse complex
arithmetic on NVIDIA CUDA-enable GPUs, we have attempted
to test the capabilities of parallelizing sparse real computations
(with the aid of Cusp, refer to Table 1) using a steady-state
diffusion equation (where K and � are real) to estimate μa us-
ing intensity-based measurements in both 2-D and 3-D cases.
Even though the GPU is able to provide speedup (up to 2)
for calculation of � or �* in solving sparse system of linear
equations, the overall computation time taken per iteration from
start to end (including the overhead of transferring sparse ma-
trices from the CPU memory to GPU memory) is increased (at
least by 70%) in comparison of GPU to CPU in these sparse
cases (similar to observed trend in Refs. 40 and 41). The sparse
cases have large overhead for GPU calculations in comparison
to the CPU ones because the GPU compute kernels are not
fully optimized. This overhead can become negligable when the
problem size (number of nonzero entries) becomes bigger (typi-
cally >40,000). For fully bandwidth-optmized FEM meshes, the
number of nonzero entries for the GPU-limited mesh (with NN

= 13,377) is ∼30,000, making the GPU-sparse calculations
not attractive compared to CPU-saprse calculations. Thus, only
CPU-sparse implementation is attempted in this work. Also,
note that sparse computations on currently available GPUs
were mainly centered around matrix-vector computations (en-
countered in iterative solvers to deduce x in Ax = b), which
are not as straightforward to implement and integrate into the
existing domain-specific applications, such as optical image
reconstruction.42, 43 Hopefully, the next generation of GPUs will
be able to perform sparse computations with similar ease as
current real computations and support sparse complex compu-
tations (including matrix-matrix computations). Although it is

not attempted for the fair comparison of the CPU and GPU com-
putations, the optimal computations will utilize both CPU (for
sparse matrix computations) and GPU (for full matrix compu-
tations).

Table 4 gives the computational time taken in a given iteration
for the mesh of similar size (NN ≈ 9200) both in 2-D and 3-D
cases. Although the GPU calculations took similar time between
2-D and 3-D calculations, there is a factor-of-20 difference be-
tween the 2-D and 3-D calculations with CPU-Full strategy,
especially in solving for � in Eq. (4). This is primarily due to
the higher numerical condition number of 3-D mass matrix [K in
Eq. (3)], which takes more iterations to converge to a solution
[� in Eq. (4)] compared to their counterparts in 2-D cases for the
same size K.8, 44 This higher condition number in the 3-D case
could result from the nonuniform nature of 3-D mesh. The tetra-
hedral elements are formed using 3-D delaunay, which makes
a uniform mesh more complex to generate,45 as compared to
the 2-D mesh. Also, the condition number of the mass matrix
(K) depends on the number of source fibers and their placement.
Within this work, where a ring type of data acquisition is per-
formed, the regions far away from the fibers have negligible con-
tribution as opposed to regions close to source/detector fibers.
Therefore, the 3-D problem has a higher condition number, re-
quiring more iterations. Hence, this leads to longer computation
time, as compared to the 2-D problem, for decomposing P–1K
and then solving for � in Eq. (4). Because the decomposition
primarily involves matrix-vector computations, with GPU offer-
ing massive parallelization, results in similar computation time
for the same size matrices both in the 2-D and 3-D cases (Table
4) with GPU giving peak performance in the 3-D case. Note that
with J being a full matrix, computations for the last two instances
(5 and 6) in Table 4 were not applicable to use sparse compu-
tations. These computations were carried out using CPU-Full
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Table 4 Comparison of computation time (in seconds) taken at each
instance (as listed in Section 2.2) between 2-D and 3-D meshes of
similar size using both CPU (Intel Xeon E 5410 with 4 GB memory)
and GPU (NVIDIA Tesla C 1060) in a given iteration using the three
strategies discussed in Section 2.3. The last row indicates the total
time taken for the iteration. Because J is full matrix, the CPU-Sparse
calculations are not applicable (NA) in instances 5 and 6.

Instance No. Strategy 2-D 3-D

NN – 9223 9211

P− 1K 1 CPU-Full
CPU-Sparse

GPU-Full

376.9
0.0015
36.8

373.3
0.0035

37.1

� in Eq. (4) 2 CPU-Full
CPU-Sparse

GPU-Full

161.4
7.7

14.8

3307.3
669.9
18.7

P− 1K* 3 CPU-Full
CPU-Sparse

GPU-Full

377.3
0.0016
37.1

374.6
0.0032

38.2

�∗inP −1K ∗

�∗ = P −1q∗ 4 CPU-Full
CPU-Sparse

GPU-Full

160.1
8.1

14.2

3305.8
671.4
18.9

JTJ 5 CPU-Full
CPU-Sparse

GPU-Full

20.37
NA

7.33

20.6
NA
6.0

�μ in Eq. (7) 6 CPU-Full
CPU-Sparse

GPU-Full

282.1
NA

31.5

282.9
NA

29.2

Total time – CPU-Full
CPU-Sparse

GPU-Full

1389.2
381.6
183.5

7768.9
1737.1
286.2

strategy, and the same computation time taken by the CPU-Full
strategy were taken into account in calculating the total time
taken per iteration for CPU-sparse strategy.

The imaging domains considered in this work are circular for
the 2-D case and cylindrical for the 3-D case, with a tumor-to-
background contrast being 2. But the trends observed in terms
of computational speedup observed between CPU and GPU
computing should be similar to any test object (varying tumor-
to-background contrast, size, and position of tumor). It is very
well known that the contrast recovery is highly dependent on
the spatial location of the tumor;38 the images obtained either
using single or double precision will be identical (shown in
Fig. 3).

As mentioned earlier, due to the available onboard memory
(4 GB), the FEM mesh that could be used in GPU calcula-
tions has to be <13,377 nodes on a NVIDIA Tesla C1060 GPU
card. With the advent of newer GPU architectures and genera-
tions, this limit could soon disappear. The current Fermi-based
NVIDIA Tesla C2050 GPU card offers 6 GB of onboard memory
(with 448 CUDA cores),46 which can enable GPU calculation
for mesh with the number of nodes as 16,384. Note that the
choice of FEM mesh is dependent on the size of the imaging do-

main, number of measurements, signal-to-noise ratio of the data,
and the required stability of the forward solver.47 Discussion of
the same is beyond the scope the presented work.

Because modern day CPUs have multiple cores, it is possi-
ble to take advantage of the parallel computing power of these
multicore CPUs. Recent work by Borsic et al.48 for a similar
problem (electrical impedance tomography) like diffuse opti-
cal image reconstruction, the achievable speedup using a dual
quad-core Intel Xeon processor was 7.6. But this required rewrit-
ing/optimizing the routines used in the computing of Jacobian
and forward problem, where as the GPU calculations performed
in this work used already preexisiting routines. The speedup
obtained using a multicore processor with out the optimization
is only 4.6.48 Also, the typical cost of dual quad-core processor
is at least twice expensive compared to the top of the line GPU
used in this work (Table 2).

It is important to note that traditional parallel computing uses
large number of processors connected in parallel to form a clus-
ter, with an overhead of cost and demanding large footprint in
the lab settings. These bulky parallel computer systems are not
very attractive in the clinical settings. The GPU boards are com-
paratively low cost and fit into a traditional desktop computer,
resulting in an desktop parallel computer (with a very small
footprint), could become very attractive in the clinic to perform
image reconstruction/analysis tasks. Usage of these GPU cards
to accelerate FE meshing using multimodal imaging data that
could be used in the NIR imaging studies is currently being ex-
plored. The CULA-based mex programs used in this work along
with necessary documentation for installation and compiling are
provided as open source.36

4 Conclusions
Because general purpose computing using GPUs is becom-
ing attractive in many areas of medical image reconstruc-
tion/processing, this work demonstrated that with the use of
GPUs the speedups for a single iteration (start to end) of dif-
fuse optical tomographic image reconstruction could be up to 40
compared to traditional CPU calculations. Also, the GPU com-
putations are carried out using an open-source package (CULA)
and appropriate code wrappers were used to integrate these rou-
tines into the existing diffuse optical image reconstruction pack-
age (NIRFAST). The current limitation to use GPU on a daily
basis for diffuse optical tomographic image reconstruction is
the available onboard memory (currently it is limited to 4 GB),
which puts a restriction on mesh size that could be used. More-
over, the sparse complex calculations are not supported in GPU
computing, making it less attractive for use in FE-based models.
Because there is tremendous growth in the capabilities of GPU
computing, this limitation might vanish, making GPU comput-
ing capabilities similar to those of CPU in applications that
require more memory and sparse computations. More impor-
tantly, along with the cost effectiveness, these GPU cards are
integrated with traditional desktop computers, giving massive
parallel computing power at the desktop. Specific to diffuse op-
tical tomography, GPU computing holds the promise of making
the image reconstruction procedure match the time line, with the
data acquisition, leading to dynamic NIR imaging viable in the
clinic.
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