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Abstract. NIR spectra of 77 endometrium sections (malignant, hyper-
plasia, and normal samples) are collected. Partial least squares discrim-
inant analysis (PLS-DA) and fuzzy rule-building expert systems (FuRES)
are used for classification based on the NIR spectral data. The classifi-
cation ability of two classifiers is evaluated by using ten bootstraps and
five Latin partitions. The results indicate that the classification ability
of FuRES is better than that of PLS-DA. The sensitivity, specificity, and
accuracy obtained from FuRES for malignant endometrium diagnosis
are 90.0 ± 0.7, 95.0 ± 0.8, and 93.1 ± 0.8%, respectively. The results
demonstrate that NIR spectroscopy combined with the FuRES tech-
nique is promising for the classification of endometrial specimens and
for practical diagnostic applications. C©2010 Society of Photo-Optical Instrumenta-
tion Engineers. [DOI: 10.1117/1.3512183]
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1 Introduction
Endometrial carcinoma is the third major cause of gynecologic
cancer death (behind ovarian and cervical cancer). Currently, it
is the most common malignancy of the female genital tract in
industrialized countries and is increasingly prevalent throughout
the world year by year.1

Traditional diagnostic tests for endometrial carcinoma in-
volve fractional curettage, which has some disadvantages and
limitations, including: 1. blind curettage can cause the identi-
fication of small lesions to be missed; 2. biased evaluations of
tumor location, grade, and penetration depth in the myometrium
can lead to high false-positive rates;2 and 3. it is sometimes
difficult to distinguish differentiated tissues between endome-
trial carcinoma and highly atypical hyperplasia in pathology.
Consequently, there is an urgent demand for developing an ac-
curate, rapid, and inexpensive approach to diagnose endometrial
carcinoma.

Near-infrared spectroscopy (NIRS) has been successfully ap-
plied in noninvasive pathology studies. The absorption of near-
infrared radiation (14,700 to 4000 cm–1) provides qualitative
and quantitative information about the chemical composition of
physical tissues. Any alteration in the composition of the tis-
sues can be detected and used for diagnostic purposes. Most
of the NIRS investigations dealing with human tissues were on
breast.3, 4 Other NIRS studies including cervix,5 brain,6 skin,7

prostate,8 lung,9 head and neck,10 pancreas, 11 and colorectal tis-
sues have also been reported.11 The goals of these studies were to
disclose absorption peaks of one or more chromophores, charac-
terizing the differences between malignant and normal tissues.

Chemometrics provides a powerful tool for researchers to
extract qualitative and quantitative information effectively from
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overlapped NIR peaks. Many pattern recognition techniques
are widely used for classification such as partial least squares
discriminant analysis (PLS-DA),12 cluster analysis (CA),13 ar-
tificial neural network (ANN),14 SIMCA,15 etc.

The aim of our work is to develop a new chemometric
method to diagnose endometrial carcinoma based on the NIR
spectra of endometrial tissues. The NIR spectra of endome-
trial specimens were collected and preprocessed. PLS-DA and
fuzzy rule-building expert system (FuRES) models were used
for discriminating various classes of samples. The better re-
sults of the FuRES classifier were obtained with sensitivity of
90.0 ± 0.7%, specificity of 95.0 ± 0.8%, and prediction accu-
racy was 93.1 ± 0.8% for detecting patients with endometrial
carcinoma.

2 Theory
FuRES is a multivariate classifier based on information theory
for modeling data in the form of an easy-to-interpret classifica-
tion tree.16 Using the iterative dichotomiser 3 (ID3) algorithm,
FuRES provides local modeling and implements conjugate gra-
dient optimization for the global minima of fuzzy classification
entropy. By this algorithm, a decision tree was constructed, tak-
ing the whole set of samples as a root node. Then it partitions
the samples at each branch until all the samples belong to one
class at each leaf (i.e., terminal node). A classification tree is
constructed with fuzzy logic applied at each. Fuzzy classifiers
are robust, so that outlying data objects would not cause the
model to degrade as in other least squares classifiers.16

PLS is a multivariate statistical technique for modeling a
relationship between dependent variables (Y) and independent
variables (X). PLS-DA aims to find the variables and directions
in multivariate space that discriminate the known classes in the
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calibration set. In our work, a set of binary codes, [1 0 0], [0 1 0],
and [0 0 1], were used to represent three types of pathological
sections of endometrium tissue.

The bootstrapped Latin partitions (BLPs) method can pro-
vide an unbiased evaluation of pattern recognition models.17

The method was developed based on traditional cross-validation
and resampling methods. With the Latin-partition method, block
cross-validation is implemented. The dataset is randomly par-
titioned into npart equally sized blocks. One group is left out
for validation and the others are used for model building. Each
group is used once for prediction and (npart − 1) times for train-
ing. The objects are each used once and only once for prediction,
so that the results for the dataset can be pooled. Bootstrapping
is a resampling method that uses sampling with replacement.18

The prediction error is averaged among the bootstraps, and
the standard deviation of the errors allows confidence intervals to
be calculated. Therefore, the use of bootstrapped Latin-partition
validation can help characterize the inherent variations in the
data that result from different partitions between the training
and prediction datasets.19

3 Materials and Method
A Nicolet 6700 (Thermo Scientific, Waltham, Massachusetts)
extended Fourier transform near-infrared (FT-NIR) spectrome-
ter (Thermo Electron) equipped with an InGaAs detector was
used for the NIR measurement. The spectrometer was controlled
by OMNIC service software, version 7.3. Data analysis was done
using MATLAB software (The MathWorks Incorporated, South
Natick, Massachusetts).

A total of 77 pathological sections of endometrium tissue
were provided by Beijing Obstetrics and Gynecology Hos-
pital affiliated with Capital Medical University, Beijing. The
histopathological diagnoses indicated that the 77 cases were
divided into three groups, including 29 cases of endometrial
carcinoma with the age of patients between 35 and 71, 30 cases
of endometrial hyperplasia within ages 29 to 63, and 18 cases of
normal endometrium tissue within ages 19 to 35. Tissue speci-
mens were prepared as routine paraffin sections.

The NIR spectra of pathological sections were collected
by an optical integrating sphere system at room temperature
with diffuse reflectance mode. All sections were scanned from
4000 cm− 1 to 10,000 cm− 1, and the spectrum of each sample
was obtained as a mean of 64 scans, with a resolution of 4 cm− 1.
Each section was measured at five different locations, and the
average spectra of tissue sections were used as the spectra of
cases in the following analysis.

4 Results and Discussions
The spectra were first smoothed using the Savitzky-Golay al-
gorithm with a five-point cubic polynomial to eliminate high-
frequency noise and baseline drift, followed by multiplicative
scatter correction (MSC) to correct the baseline effects caused
by physical conditions, such as optical path length, thickness,
and medium of sections. The spectra were normalized to unit
length and the average of all the normalized spectra was sub-
tracted from each spectrum.

Fig. 1 Effect of the latent variable numbers on averages of calibration
error (solid line) and prediction errors (dashed line).

Principal component analysis (PCA) was applied to visualize
differences among the samples. The principal component scores
show that the three classes of samples are not resolved.

The average values of calibration and prediction errors with
respect to latent variable number are given in Fig. 1, with 95%
confidence intervals obtained from ten bootstraps and five Latin
partitions. The latent variable number of 3 was chosen based on
this evaluation.

A confusion matrix obtained from the average prediction re-
sults of ten bootstraps is given in Table 1. In this matrix, the rows
represent the true class, and columns represent the predicted
class. The average values of the ten bootstraps are presented
with 95% confidence intervals. In this test, the sensitivity was
77.9 ± 2.1%, the specificity was 65.6 ± 2.1%, and prediction
accuracy was 70.3 ± 2.1% for detecting malignant samples.

FuRES constructs a classification tree that allows the visu-
alization of the inductive structure of the rules. Membership
functions in FuRES allow values between 0 and 1 and provide
a measure of the degree of similarity of elements in the total
population.20

Table 1 The confusion matrices obtained from the validations of
PLS-DA and FuRES classifiers.

Malignant Hyperplasia Normal

PLS-DA model

Malignant 22.6 ± 0.6 5.4 ± 0.6 1.0 ± 0

Hyperplasia 15.3 ± 0.9 13.5 ± 1.0 1.2 ± 0.2

Normal 0 ± 0 0 ± 0 18.0 ± 0

FuRES model

Malignant 26.1 ± 0.2 1.9 ± 0.2 1.0 ± 0

Hyperplasia 0.5 ± 0.3 28.0 ± 0.5 1.5 ± 0.5

Normal 0.4 ± 0.3 0 ± 0 17.6 ± 0.3
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Fig. 2 The FuRES classification tree of the entire dataset after prepro-
cessing. The numbers (Nc) and names of samples were labeled in each
leaf node. The values of fuzzy entropy (H) corresponding to rules 1
through 5 are given in the rectangles.

A FuRES classification tree built from the entire dataset con-
sisting of 77 samples is given in Fig. 2. The logistic value of
fuzzy entropy generated by the first rule was 0.70, and samples
were separated for two subsets. The classification entropy of the
system decreases as the classification tree branches.

As in the PLS-DA evaluation, the FuRES models were eval-
uated by using ten bootstraps and five Latin partitions. The
prediction results were pooled among the five Latin partitions,
and the average predictions of the ten bootstraps are reported
with 95% confidence intervals.

The prediction results for FuRES are also given in
Table 1. The sensitivity for detecting malignant samples was
90.0 ± 0.7%, the specificity was 95.0 ± 0.8%, and prediction
accuracy was 93.1 ± 0.8%, which were better than those by
PLS–DA. A plausible explanation for the difference in perfor-
mance is that the FuRES model is accommodating three outlier
points in rules 3, 4, and 5. The fuzziness of the model prevents
these outliers from having a detrimental effect on the classifica-
tion model. These outlier samples could be driving the PLS-DA
model into an ill-conditioned solution, as would be expected
for any least squares classifier. The effect of outlier spectra dur-
ing BLP results in wide precision bounds in Fig. 1 and wider
intervals in the prediction results for nonrobust classifiers. The
results suggest that the FuRES classifier performed a soft pat-
tern recognition that exhibits robustness and better prediction
accuracy than PLS-DA for detection of endometrial cancerous
tissues by NIRS.

5 Conclusion
Based on the NIR spectra of 77 pathological endometrial
sections, classification models are constructed to diagnose en-
dometrial cancer by using PLS-DA and FuRES. Classifica-
tion accuracy from the PLS-DA model is insufficient. The
FuRES classifier significantly improves the accuracy of clas-
sification. This classifier is evaluated using ten bootstraps and
five Latin partitions that yield an average prediction accuracy
of 93.1 ± 0.8%, a sensitivity of 90.0 ± 0.7%, and a specificity
of 95.0 ± 0.8% for detecting malignant samples. The results
suggest that near-infrared spectroscopy combined with FuRES

provide a powerful tool for the detection of early endometrial
carcinoma. This method could be developed into a noninvasive
method for clinical diagnosis for other cancers.
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