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Abstract. A photon-cell interactive Monte Carlo (pciMC) that tracks
photon migration in both the extra- and intracellular spaces is developed
without using macroscopic scattering phase functions and anisotropy
factors, as required for the conventional Monte Carlos (MCs). The inter-
action of photons at the plasma-cell boundary of randomly oriented 3-D
biconcave red blood cells (RBCs) is modeled using the geometric optics.
The pciMC incorporates different photon velocities from the extra- to in-
tracellular space, whereas the conventional MC treats RBCs as points in
the space with a constant velocity. In comparison to the experiments, the
pciMC yielded the mean errors in photon migration time of 9.8 ± 6.8
and 11.2 ± 8.5% for suspensions of small and large RBCs (RBCsmall,
RBClarge) averaged over the optically diffusing region from 2000 to
4000 μm, while the conventional random walk Monte Carlo simula-
tion gave statistically higher mean errors of 19.0 ± 5.8 ( p < 0.047) and
21.7 ± 19.1% (p < 0.055), respectively. The gradients of optical density
in the diffusing region yielded statistically insignificant differences be-
tween the pciMC and experiments with the mean errors between them
being 1.4 and 0.9% in RBCsmall and RBClarger, respectively. The pciMC
based on the geometric optics can be used to accurately predict pho-
ton migration in the optically diffusing, turbid medium. C©2010 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516722]
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1 Introduction
For analyzing optical propagation through scattering and absorb-
ing turbid media, the Monte Carlo (MC) method has become a
powerful technique to track photons as they migrate through a
complex medium. The entire course of photon trajectories from
the entry into to exit from the medium can be tracked in the
computer and can even solve for the parameters of the medium.
Apparently, the most famous early use of MC goes back 1930
when Fermi introduced the MC to calculate the properties of
newly discovered neutrons.1 Since the 1950s, MC has been ac-
tively used for various applications relating to development of
the nuclear/hydrogen bomb, atmospheric optics, geophysics. In
the 1980s, the progress in computer technology helped model
more complex, randomly inhomogeneous systems including bi-
ological media.2–7 Among them, the MCML (MC maximum
likelihood) developed by Wang et al.7 simulated migration pro-
cess of photons in multilayered tissues that comprised of ho-
mogeneous layers with different optical properties, where the
internal reflection at the plane boundaries was expressed using
geometric optics. Similarly, Churmakov et al.8 in 2002 verified
the importance of refractive index matching at the boundary to
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model diffuse reflectance by splitting the photon packets into
reflection and refraction at the boundary based on the geomet-
ric optics. For randomly inhomogeneous polydisperse scattering
media, such as sprays, aerosols, smoke, fog, and foams, Berrocal
and Meglinski9 in 2005 characterized the medium by different
extinction coefficients and phase functions. In a low-hematocrit
and thin layered blood medium, random walk Monte Carlo sim-
ulation (RWMCS), introduced by Chicea and Turcu,10, 11 accu-
rately represented the multiple light scattering anisotropies by
adjusting the empirical scattering phase function.

To derive the parameters of the blood medium such as blood
flow, hematocrit, and oxygenation, Roggan et al.12 utilized the
inverse MC technique combined with the double-integrating
sphere measurements to study properties of flowing blood in-
cluding hematocrit, shear rate, osmolarity, hemolysis, and oxy-
genation that affect optical propagation in the visible and near-
IR wavelength regions. Other studies include the effect of the
scattering phase function on the measured optical properties of
red blood cells (RBCs) by Yaroslavsky et al.,13–15 noninvasive
diagnostics of organ circulation in brain16 and in subcutaneous
tissues.17, 18

We are interested in studying the optical properties of flowing
blood in the extracorporeal circulation system to noinvasively
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extract vital information such as hematocrit and hemoglobin
content. The optical properties of flowing blood vary depend-
ing on the number, the shape, the volume, the intracellular
hemoglobin content, the distribution, the orientation and the ag-
gregation of RBCs in the circuit.19, 20 The use of time-resolved
analysis using picosecond or femtosecond ultrashort pulses21–24

can be combined with MC to quantify the propagation time
through the blood medium by solving the inverse problem.
The MC codes that have been developed for blood medium
by the previous workers, however, treat RBCs as points in the
space represented by the macroscopic optical properties such as
scattering and absorption constants μs and μa ; and an anisotropy
factor g(−1 � g � 1); and a scattering phase function derived us-
ing the Mie, Rayleigh-Gans, or straight-ray theory.25–27 Hence,
the simulation using the conventional MC code does not repre-
sent actual interaction between photons and cells in the space.
In reality, some of the photons injected into blood medium prop-
agate inside the cells, and some are reflected at the boundary.
The velocity of light differs from intracellular to extracellular
space due to the difference in refractive indices. The approach by
Berrocal and Meglinski9 is promising to model inhomogeneous
distribution of RBCs with varying sizes in space, but it requires
various RBC characteristics already mentioned connected to
optical parameters including scattering phase functions.

To overcome the shortcomings of the conventional MC code
and to obtain quantitative measures of interaction between pho-
tons and blood cells, in this paper we propose a photon-cell
interactive Monte Carlo (pciMC) code that tracks photon migra-
tion in both the extra- and intracellular spaces without requiring
macroscopic parameters such as scattering phase function and
blood cell anisotropy.28 The interaction of photons at the plasma-
cell boundary of a randomly oriented three-dimensional (3-D)
biconcave RBC is modeled using the geometric optics. A single
photon-cell interaction model of Lugovtsov et al.,29 who ap-
plied the Snell’s and Fresnel’s laws to model interactions at the
boundary of an optically soft spheroidal particle, and the MC
code of Churmakov et al.,8 who compiled the internal reflection
profile at the plane boundary, are utilized to model interactions
between photons and biconcave RBCs. We developed MC code
pciMC without requiring macroscopic scattering phase function
and the anisotropy factor g to compute photon migration time
and optical density for a given blood medium by accounting for
both the intra- and extracellular migration pathways.

This paper examines the validity and utility of the pciMC
for quantifying optical density and migration time of photons
through a turbid medium such as blood without requiring empir-
ical anisotropy value g and the scattering phase function, as re-
quired for conventional MC simulation. The accuracy of pciMC
in predicting optical density and migration time is discussed in
comparison with the conventional RWMCS.

2 pciMC Model
Figure 1 shows a flow chart of the pciMC program. The tracking
of photons starts by defining a step size, followed with extraction
of scattering information stored in the look-up tables. Inside the
broken line in Fig. 1 are the look-up tables that contain the
precalculated escape probability data of photons from the RBC
based on the geometric optics. This look-up table approach was
introduced to reduce the calculation cost of pciMC code, as

Fig. 1 Flow chart of the pciMC algorithm.

reported by Sakota and Takatani28 in 2010. When the preset
number of photons have been tracked, the program returns with
the extra- and intracellular propagation time, and the net sum of
photon weights reflecting the optical density (OD) through the
medium.

2.1 RBC Model and Incident Point
We assumed that the incident light is a collimated beam of
light having the emission profile of a standard normal Gaussian
distribution from a 1-mm-diam optical fiber.
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As the first step of simulation, the pciMC program calculates
the step size S defined by

S = RN(0,1)
1

μc
, (1)

μc = H (1 − H )

MCV
σc , (2)

where RN(0,1) is the uniform random number taking the values
between 0 and 1, μc is the geometric interaction constant in
inverse centimeters, and H is the volume fraction of RBCs called
hematocrit (0 < H < 1). The mean corpuscular volume (MCV)
is the RBC volume in cubic centimeters, and σc is the mean
geometric cross section of the RBC in square centimeters. The
propagation time for the step distance is calculated assuming
the extracellular refractive index to be that of plasma (mplasma).
Note that mplasma is approximately equal to that of water (mwater

= 1.335), so the photon velocity is derived dividing the velocity
in vacuum by mplasma.

Traveling the step size S, the photon interacts with the
3-D biconcave RBCs. The photon-RBC interaction takes place
in the interaction coordinate, which is defined independently of
the MC simulation coordinate. The 3-D biconcave RBC is lo-
cated at the center of the interaction coordinate shown in Fig. 2.
The surface coordinates of the RBC model are defined in refer-
ence to Hammer et al.26

(x, y, z) = (r (θ ) sin θ cos φ, r (θ ) sin θ sin φ, r (θ ) cos θ ),

0 � θ � π, 0 � φ � 2π , (3)

r (θ ) = 3 sin4 θ + 0.75 . (4)

Equation (3) expresses the 3-D biconcave RBC surface coordi-
nates x, y, and z, respectively. Equation (4) is the biconcave RBC
surface function, where θ is the angle formed by the position
vector and the z axis, and φ is the angle formed by the projection
of the position vector and the x axis to the xy plane. The surface
data are discretized with the number of total nodes becoming
100×100 by cutting the model with an incremental angle of
�θ = 1.8 deg and �φ = 3.6 degree, respectively. Should the
unit of Eq. (4) be micrometers the volume of the RBC model
would become 86 μm3 and its geometric cross section σc of
29.5 μm2 using the following approximation:

σc = 2
∫ π

0 r (θ ) dθ + π [r (π/2)]2

2
. (5)

Fig. 2 Relationships between MC coordinate and interaction coordi-
nate.

Upon interaction of photons with RBCs, the pciMC program
randomly selects the incident point Pn and the vector χm , as-
suming random orientation of RBCs. Note that Pn and χm are
the interaction coordinates stored in the look-up table. Also Pn

are defined by

Pn = [r (θn) sin θn, 0, r (θn) cos θn]

n = 1, 2, . . . n max, 0 � θn � π/2,

n max = π

2�θn
. (6)

In Eq. (6), �θn is the same sampling angle of 1.8 deg used in
Eq. (3), so n_max becomes 50. The incident photon patterns are
required only for 0 � θn � π/2 because of an axial symmetry
of the model.

Now, χm are defined as follows

χm = sin ψm1 cos ξm2τ + sin ψm1 sin ξm2μ + cos ψm1ν,

m = 1, 2, . . . 1, 1 mmax, π � ψm1 < 3π/2,

0 � ξm2 �2π,

m max = π2

�ψm1�ξm2
. (7)

Here, ν is the normal unit vector perpendicular to the surface
at Pn , and μ and τ are the tangential unit vectors, respectively,
where they are orthogonal to each other: and �ψm2 and �ξm2

are 9 and 36 deg, respectively, yielding m_max of 100. There-
fore, a total number of incident photon pattern becomes n_max

×m_max = 5000.

2.2 Photon-RBC Interaction Model Based on
Geometric Optics

Upon photons interacting RBCs at the incident point defined
by Pn and χm , the program opens one of the 5000 look-up
tables (n_max × m_max = 5000) Qk(Pn,χm) specific to the inci-
dent point that contain the precalculated probability distribution
of photon’s escaping from the intracellular space of RBCs ex-
pressed by Eq. (8), and returns output parameters28 (Mk , Nk ,
Dk). Here, Mk are the coordinates of the scattered points, Nk are
the propagation vectors at the scattered points, and Dk are the
propagation distances from the entry points to the k-th interac-
tion points inside the RBC. The pciMC program selects output
parameters (Mk , Nk , Dk) based on the Qk(Pn,χm) probability
distribution.

At each interaction point denoted by a k value, escape proba-
bilities of photons from RBCs as precalculated using Eq. (8) are
stored in the look-up table. For example, if the table contains
only k = 1, reflection occurs at the entry point and the photon
does not enter the intra-cellular space giving Q1 = R1. If k is 2
or greater, Qk indicates the probability of photon escaping from
the intracellular space at the k’th interaction point. The internal
reflection profile reported by Churmakov et al.8 is applied to
calculate Qk(k � 2) as follows:

Qk(Pn,χm) = (1 − R1) (1 − Rk)
k−1∏
i=2

Ri , (k � 2). (8)

The probability of reflection at the k’th interaction point Rk

depends on the incident angle, refraction angle and the relative
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refractive index between the RBC (mRBC) and mplasma, where
mRBC is expressed by:12, 28, 29

mRBC = mwater + βMCHC. (9)

In Eq. (9), β is the empirically determined quantity equal to
0.001942, and MCHC is the mean corpuscular hemoglobin con-
centration in grams per deciliter. The refraction angle and reflec-
tion probability were calculated using Eq. (10) (Snell’s law) and
Eq. (11) (Fresnel’s probability), respectively, where Lugovtsov
et al. applied the same method for analysis of single interaction
between a photon and a spheroidal RBC model7, 30

ni sin αi = nt sin αt , (10)

R(αi ) = 1

2

[
sin2 (αi − αt )

sin2 (αi + αt )
+ tan2 (αi − αt )

tan2 (αi + αt )

]
(11)

In Eq. (10), αi is the incident angle, and αt is the refracted
angle. If αi is larger than the critical angle (possible only when
the refractive index of incident side ni is lager than that of the
refracted side nt ), the internal reflection occurs, and R(αi ) is
assigned the value of 1.0. Equation (11) is the average of the
reflectance for the two orthogonal polarization directions.

For each photon-RBC interaction, the precalculation was pur-
sued until the quantity Qk became less than 0.001% or the num-
ber of interaction reached the maximum limit set by k_max
< 100. The result indicated that out of 5000 precalculated Qk

tables there were some cases when the interaction number ex-
ceeded 100 with Qk values larger than 0.001% due to occurrence
of total reflection inside the RBC. Such a case was defined as
“trapping” and the probability of photons trapped indefinitely
inside the RBC was calculated as

Qtrap(Pn,χm) = 1 −
k max∑

k=1

Qk(Pn,χm). (12)

Should the trapping event occur, photons do not exit the RBC.
The photon’s weight completely diminishes due to absorption by
the intracellular hemoglobin, and hence the program terminates
such a photon. The other situation is “reincidence,” where the
photons hit the same RBC again immediately after their exit
because of the biconcave structure of RBCs. This is defined as
the “reincidence” and ignored.

In deriving scattered point coordinates Mk, the following
four conditions were assured for optimizing the accuracy and
computation time. The condition 1 (COND1) required that the
vector at Mk point was in the same direction as that at k-1 point.
The condition 2 (COND2) ensured that the photon vector at
the k-1 point made an acute angle with the vector joining Mk-1

and Mk points. The third condition (COND3) was that the line
joining the two points Mk-1 and Mk remained inside the RBC. The
occurrence of such a situation was prevented by the COND3.
Finally, the condition 4 (COND4) stated that the photon vector
at Mk-1 was expected to be parallel with the vector joining two
points Mk-1 and Mk with the dot-product between them to be
close to 1.0. The mathematical expressions of COND1 through
COND4 are provided in the the appendix.

2.3 Photon Weight Loss Inside RBC and
Propagation Time

Using the propagation distance Dk inside the RBC, the photon
weight loss was estimated by the Beer-Lambert law:

Ps

Pi
= exp(−2.303×e(λ)×(10×MCHC)/mHb×Dk), (13)

where Pi and Ps are the incident and scattered photon weights,
respectively; e(λ) is the molecular extinction coefficient for the
wavelength λ in cm− 1/mol/l, and mHb is the molecular weight
of hemoglobin equal to 64,500 g/mole. We used the molecular
extinction data of human hemoglobin obtained by the rigorous
investigation of Horecker.31 For the wavelength of 651 nm used
in the experiment, e(651 nm) is equal to 362.4 cm− 1/mol/ l.

The intracellular migration time TRBC was calculated using
Dk and the intracellular photon velocity based on mRBC as fol-
lows:

TRBC = Dk

c
,

c = c0

mRBC
,

(14)

where c is the photon velocity within RBC, and c0 is the photon
velocity within vacuum.

2.4 Translation from the Photon-RBC Interaction
Coordinate to the pciMC Simulation Coordinate

After the pciMC selects the scattered data Mk , Nk , and Dk based
on the Qk probability distribution, the photon moves from point
Pn to point Mk by traveling the intracellular distance of Dk

and the propagation vector is switched from χm to Nk . Since
these scattered data are in the photon-RBC interaction coordi-
nate shown in Fig. 2, the data must be converted to those of
the MC simulation coordinate. These two coordinates are in-
terrelated by the incident point and the vector to satisfy the
conditions in all the cases so that when the interaction coordi-
nate is rotated around the incident vector χm , the incident vector
in the photon-RBC interaction coordinate fits the simulation co-
ordinate. Therefore, we must decide this rotational angle �. In
this study, � is randomly selected as follows.

� = 2π ∗ RN(0,1) (15)

� is the azimuthal angle, where in pciMC, the azimuthal scatter-
ing is the same as other simulations such as MCML (Ref. 7) and
RWMCS (Refs. 10 and 11). Equation (15) means that the RBC
is randomly oriented around the incident vector. Although the
MCML and RWMCS likewise showed the calculation method
about the scattered vector, we employed the method called the
“quatemion,” which is frequently used in the computer graph-
ics. Here, simple description of coordinate translation using
quatemion is provided. First, quatemion q is defined as follows.

q = a + i x + j y + kz = (a; x,y,z) = (a; v),

i2 = j2 = k2 = i jk = −1. (16)

Here, v is the point or vector in the 3-D coordinate. Although
the real number a is arbitrary, a = 0 is the most simple de-
scription. The incident point and the vector in the interaction
coordinates are defined by Pn = (a1; v1) and χm = (a2; v2),
respectively. Next, the incident point and the vector in the
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simulation coordinate are also defined by (a3; v3) and (a4; v4),
respectively. These are already known prior to the photon-RBC
interaction event. The scale of the interaction coordinate is con-
formed to that of the simulation coordinate. We calculate the
angle α formed by v2 and v4. Then the description of quatemion
q1 on the rotation from v2 of v4 is calculated as

q1 =
[
(cos

α

2
; sin

α

2
∗ (v2×v4)

]
. (17)

If v2 and v4 are not linearly independent, the alternative indepen-
dent vector is used in place of v2 for Eq. (17). The description
of quatemion q2 for random rotation about the axis of v2 is also
calculated as

q2 =
(

cos
�

2
; sin

�

2
∗ v2

)
, (18)

where � was already shown in Eq. (15). The scattered point
in the interaction coordinate was Mk = (a5; v5). To calculate
the scattered point in the simulation coordinate, (a1; v1) was
translated to the original point. Then the scattered point became
s|| = (a5 − a1; v5 − v1). According to Eq. (18), s|| was rotated
by q2, and additionally rotated by Eq. (17). Likewise, q1 was
executed. Finally, the scattered point in the simulation coordi-
nate s was calculated by the point translating about v3. These
calculations are as

s = q1q2s||q2q1 + v3, (19)

where q1 and q2 are the conjugations of q1 and q2, respectively.
Simultaneously, the scattered vector in the simulation coordinate
was also calculated using Nk = (a6; v6) as

s = q1q2 Nkq2q1. (20)

3 Materials and Methods
The accuracy of the pciMC model for predicting OD and mi-
gration time of photons through blood medium were validated
against the measurements made using a specially designed time
and space resolved optical spectrometer (TSROS) described in
Sec. 3.2. As an experimental medium, fresh porcine blood ob-
tained from a local slaughterhouse was utilized, where the blood
was centrifuged to separate the RBCs into RBCs with smaller
MCV and higher MCHC (RBCsmall) and larger MCV and lower
MCHC (RBClarge) according to their specific gravity. Then, each
RBC samples were suspended in the phosphate-buffered saline
(PBS) solution to provide the experimental medium with differ-
ent MCV and MCHC. The MCV and MCHC were measured
using a Coulter counter whose accuracy was verified against
the microcapillary centrifuge method. The measured MCV and
MCHC values were used in the pciMC and RWMCS, where
their predictions were compared against the experimental OD
and migration time of respective RBC suspension measured
by a time and space resolved optical system described in the
following.

3.1 Preparation of Blood Samples
Fresh porcine blood obtained from a local slaughterhouse was
anticoagulated using 100 cc of 4% sodium citrate and 10,000
units of heparin per 1 L of blood. The hemoglobin oxygen sat-
uration was adjusted to the level greater than 98% using an
oxygenator. To investigate the effects of MCV and intracellular
hemoglobin concentration MCHC on the optical characteristics

Table 1 Input parameters and analysis conditions of pciMC.

pciMC MCV (fL) MCHC (g/dL) H σ c (μm2) μc (cm− 1)

RBCLarge 1 55.1 29.3 0.17 21.915 556.442

RBCLarge 2 50.6 28 0.21 20.705 654.712

RBCLarge 3 49.2 29.2 0.2 20.322 660.864

RBCSmall 1 64.4 28.4 0.22 24.317 650.052

RBCSmall 2 58.5 27.2 0.2 22.808 623.804

RBCSmall 3 57.3 28.1 0.21 22.495 628.129

in terms of OD and migration time, the blood sample was first
centrifuged for 15 min with 2600 G and the plasma portion in
the top layer was discarded. The resultant packed RBCs with
the hematocrit of around 80 to 90% were further centrifuged32

for 60 min with 15000 G and 30◦C. After the second centrifu-
gation, approximately 10% of the top layers with lower spe-
cific gravity were extracted as relatively larger RBCs (RBClarge)
and the bottom 10% with higher specific gravity as smaller
RBCs (RBCsmall). These cells were washed in the PBS (PBS:
300 mosmol/L, pH 7.4) to remove free plasma hemoglobin
and to adjust the hematocrit level to approximately 20% by
suspending the RBCs in the PBS. The MCV and the MCHC
of the RBCs-PBS suspension were then measured using a
Coulter counter (CelltacαMEK-6358, Nihon Kohden Inc.,
Tokyo, Japan).

Table 1 summarized the parameters of the RBClarge and
RBCsmall as measured using a Coulter counter. The accuracies of
MCV and MCHC measurements were 1.91 and 6.0%, respec-
tively, calibrated against a microcapillary hematocrit method.
Geometric cross section and interaction constants σc and μc of
each suspension were derived by inserting the MCV, MCHC,
and H values in Eqs. (2) and (5). Table 2 listed the mean values
of MCV and MCHC obtained from the data in Table 1, and the
optical constants were derived using the Mie theory and used
for RWMCS simulation.

3.2 TSROS
The optical measurements of the RBClarge and RBCsmall sus-
pended in PBS were performed using a TSROS. The TSROS
comprises of a picosecond light pulsar PLP-02 C4725, a laser
head (74 mW, 53 ps pulse width, 651 nm wavelength), a
streak camera C4334, and a delay unit C1097-01, all made by
Hamamatsu Photonics Inc. (Hamamatsu, Japan). The ultrashort
light pulses from the laser head were first split into a reference
and an excitation signal, the latter was carried in one optical glass
fiber (beam diameter: PHI = 1 mm) to a collimator lens (diame-
ter = 30 mm, 60-mm focal length, DLB-30-60PM, Sigma Koki
Inc., Japan), guided to a space-resolved cuvette and then illumi-
nated to the RBC suspension through a 0.15-mm-thick micro-
scope cover glass. A specially designed optical cuvette enabled
fine adjustment of the blood sample thickness d with the resolu-
tion of 10 μm. The immerging light from blood sample through
a 1.35-mm-thick microscope cover glass was then guided to
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Table 2 Input parameters and analysis conditions of RWMCS.

Mean MCV Mean MCV σ s σ s
− μs σ a μa

RWMCS (fL) (g/dL) Mean H (μm2) (μm2) (cm− 1) g (μm2) (cm− 1)

RBCLarge (1,2,3) 51.6 28.8 0.193 35.357 0.005 1053.856 0.99487 0.02 0.746

RBCLarge (1,2,3) 60.1 27.9 0.21 39.903 0.006 1065.299 0.99438 0.023 0.762

a streak camera using another optical fiber (outer diameter
= 2.4 mm, detection area diameter = 1.0 mm) axially aligned to
the incident fiber. Both the photons transmitted through a RBC
suspension and those through the reference fiber were brought
to a streak camera to analyze their intensity levels using the
software HPD-TA.7.1.0 (Hamamatsu Photonics Inc., Japan).

The transmittance through a sample was expressed in terms
of the intensity of the transmitted intensity s(t) normalized to the
reference signal intensity. The time of flight through the sample
was computed using Eq. (21). With the center of the reference
signal r (t) as G r (t), and the center of the sample signal s(t) as
G s(t), the mean time of flight through the sample is given by

mean time of flight : �t = G s(t) − G r (t)

= Tmedia(d) − T0(d)

= T (d), (21)

where Tmedia(d) is the propagation time through blood layers of
thickness d, and T0(d) is the propagation time through air for
the cuvette sample thickness d .

3.3 Biconcave versus Spherical RBC model and
pciMC versus RWMCS

3.3.1 Biconcave versus spherical RBC model

The accuracy of the pciMC with the biconcave RBC model was
first compared against the spherical RBC model. The number of
nodes and the analysis conditions were kept the same between
the two RBC models.

3.3.2 pciMC versus RWMCS

The computation time, and predictions for OD and propagation
time through a blood medium derived by pciMC were compared
against those by the RWMCS model. For RWMCS simulation,
the model proposed by Chicea and Turcu10, 11 together with the
scattering and the absorption cross sections σs and σa derived
by Mie theory were used to compute OD and propagation time.
As for the refractive index, the real part was defined by Eq. (9),
and that of the imaginary part was calculated as.33

nimag = ln 10

πmHb
λ εμM · MCHC. (22)

In Eq. (22), λ is the wavelength in micrometers, and εμM is the
micromolar extinction coefficient of hemoglobin at a specific
wavelength λ in square centimeters per micromole. According
to Reynolds,34 the experimentally observed back scattering cross
section σ−

s of human RBCs at 633 nm is approximately 20 times
that of Mie theory, so the anisotropy factor g used in RWMCS

was expressed as follows.

empirical RBC anisotropy g = σ+
s − 20σ−

s

σ+
s + 20σ−

s
. (23)

Here, σ+
s and σ−

s are the forward and backward scattering cross
sections calculated by the Mie theory. Moreover, for appropriate
execution of RWMCS, the anisotropy g is usually expressed as a
decreasing function of the optical depth [Eqs. (24) through (26)]
due to multiple scattering effects in the blood medium:

τ = Hσs

MCV
d, (24)

g1(τ ) = gτ ifτ � 1.8, (25)

g2(τ ) = gG(τ ) with G(τ ) = (τ − 1)eτ + 1

eτ − τ − 1
if τ > 1.8. (26)

In Eqs. (24) through (26), τ is the optical depth, and d is the
penetrating depth of photons into blood. Although RWMCS is an
effective model, Chicea and Turcu reported10, 11 its applicability
was limited for the region of multiple scattering with the optical
depth of τ< 2. The anisotropy value g becomes too low in deeper
medium where optical diffusion usually takes place. Assuming
that the anisotropy value converges to a constant level in the
diffusion region,29 in this study Eq. (27) was introduced to limit
the change in g value:

g3(τ ) = gG(τ max) if τ > τ max. (27)

As for the analysis of RWMCS, the τ_max value was selected
to curve fit the simulation results of both OD and propagation
time to the experiments.

The azimuthal angle required for RWMCS was calculated
using Eq. (15), while the scattering angle θ was derived as
θ = cos − 1 μ, where μ was given by Henyey-Greenstein phase
function:

μ = 1

2g

[
1 + g2 +

(
1 − g2

1 + 2g RN(0, 1) − g

)2
]

. (28)

To tracking photons in both pciMC and RWMCS, there was
no limitation in the xy space with respect to the z direction of
blood layer thickness. In the pciMC, the photon was terminated
when the conditions for Eq. (12) were satisfied. The photon
weight threshold of 0.001 was used to terminate tracking photons
based on the detection limit of the streak camera. In simulating
the experimental condition, the blood layer was sandwiched
between two thin glass plates with a refractive index of 1.5.
The incident point was selected by assuming a standard normal
Gaussian distribution within the 1.0-mm diameter of the incident
beam. Detection area was also adjusted to be a 1.0-mm diameter.

The calibration of the instrument was conducted for the blood
thickness of 100 μm because the nonblood conditions were too
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Fig. 3 Convergence requirement for MC simulation : (a) number of photons required and (b) number of nodes required.

difficult for the streak camera. Prior to analysis, we also con-
firmed the RBC mesh size and the number of photons tracked for
convergence in pciMC for the blood thickness of d = 4000 μm,
the hematocrit of 20%, the MCV of 55.1 fL, and the MCHC
of 29.3 g/dL. Figure 3(a) shows the errors normalized to that
with 106 photons with 104 nodes of the RBC model, show-
ing both OD and the propagation time converge with 104 pho-
tons injected into the medium. In Fig. 3(b), the convergence
was tested for the required number of nodes with 104 photons

injected into the medium. The photon trajectories inside the
RBC suspension were shown for 100, 1600, and 10,000 RBC
nodes. The errors for both OD and propagation time converged
with 104 nodes. The mesh condition was described earlier in the
Sec. 2.

The RWMCS was programmed using the MCML source
code.7 In all the analysis, the simulation tracked 104 photons. In
the RWMCS simulation, the photon velocity remained constant
in the medium with the refractive index of 1.335.
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Fig. 4 Example of photon-RBC interactions showing photon trajectory inside the RBC model: (a) general case of photon trajectory from the number
of interactions k = 1 to 4 and (b) rare case of photon trajectory of k = 100.

4 Results
4.1 Computation Cost of pciMC
The computation time of pciMC compared against the RWMCS
(τ_max = 2) using the source code of MCML with an MCV
of 55.1 fL, an MCHC of 28.8 g/dL, an H of 0.193, and a blood
thickness d of 4000 μm. The pciMC computation time was
approximately 1.375 times that of RWMCS (τ_max = 2).

4.2 Scattering Distribution in pciMC
Figures 4(a) and 4(b) show example patterns of photon-
RBC interactions inside a RBC having a volume of 86 μm3.
The dark lines in the figures are the intracellular photon
paths. Figure 4(a) is a typical case of the intracellular pho-
ton trajectory. The incident point coordinate was (x, y, z)

= (3.75 μm, 0 μm, −1.64×10− 7 μm) with an incident vec-
tor of (0.710, −0.672, −0.219). The parameter Qk was pursued
until the number of interaction k became 4. The photons al-
most refracted through the RBC membrane for k = 2 because of
the very small difference in the refractive index from the intra-
to extracellular medium. In contrast, Fig. 4(b) shows a very
rare case when Qk reached the maximum interaction number
of k_max = 100 satisfying the condition of Qk max 0.001% or
lower. In Fig. 4(b), the incident point coordinate was (x, y, z)
= (3.62766 μm, 0 μm, 0.45828 μm) with the incident vector of
( − 0.284947, 0.939347, 0.190871). In the case of Fig. 4(b), the
incident angle at each interaction point became large causing
repeated reflection. The indefinite intracellular reflection took
place so that the photon could not escape from the intracellular
space.
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Fig. 5 Photon scattering distribution as a function of scattering angle from 0 to 15 degree for biconcave and spherical RBC model and those by
Henyey-Greenstein phase function.

We confirmed that the internal reflections increased as the
relative refractive index mRBC/mplasma increased, consequently
increasing the intracellular optical path lengths.28 Concerning
the propagation in the suspension of RBCsmall with an MCHC of
28.8 g/dL and RBClarge with 27.9 g/dL for a normalized MCV
of 86 μm3, the intracellular path length was slightly different,
2.93 μm in RBCsmall and 2.92 μm in RBClarge, respectively.
Figure 5 shows the Qk distributions of scattering predicted by
Eq. (8) as a function of scattering angle for biconcave and spher-
ical RBC models with an MCHC of 27.9 g/dL in comparison to
Henyey-Greenstein phase function. The anisotropy value was
calculated as the mean cosine from

pciMC anisotropy g =
∫ π

0
Q(θ ) cos θdθ. (29)

In Fig. 5, g = 0.9819 for the biconcave model, while g = 0.9805
of the spherical model was slightly smaller. The Henyey-
Greenstein function in Fig. 5 was plotted for g = 0.9819 of
the same value of biconcave model. The curves showed simillar
trend with the spherical model.

4.3 OD and Propagation Time by pciMC, RWMCS,
and Experiments

The OD and propagation time for the sample thickness vary-
ing from d = 500 to 4000 μm derived by pciMC for bicon-
cave and spherical RBC models, RWMCS models for τ_max
= 2, and experiments using porcine blood samples were sum-
marized in Figs. 6(a) and 6(b) for RBClarge and in Figs. 7(a)
and 7(b) for RBCsmall. The RWMCS predictions were opti-
mized to best fit the experiments by selecting the appropriate
τ_max values so as to yield relative measure of the pciMC
validities.

Concerning the overall trend for OD, both pciMC and
RWMCS showed lager errors for the blood layer thickness of
500 μm, with errors decreasing with increases in the blood layer
thickness. The pciMC using spherical RBC model revealed a
strong tendency of forward scattering compared to the pciMC

with biconcave model, revealing faster migration time in the
former than the experiments.

Figure 8(a) shows the intracellular photon migration time
and number of RBCs interacted with photons in the RBClarge

(a)

(b)

Fig. 6 (a) Optical density and (b) propagation time versus blood thick-
ness of RBCsmall suspension.
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(a)

(b) 

Fig. 7 (a) Optical density (b) propagation time versus blood thickness
of RBClarge suspension.

and RBCsmall suspensions. The ratio of the intracellular mi-
gration time to the total time is shown in Fig. 8(b). For both
RBClarge and RBCsmall suspensions, the ratio of the intracellular
to the total migration time decreased as the blood layer thickness
increased.

5 Discussion
The newly developed photon-RBC interactive MC pciMC code
provided for the first time the analysis of intra- and extracellular
photon migration in the blood, where the photon-RBC interac-
tion was modeled using geometric optics. The interaction con-
stant referred as scattering constant in RWMCS was defined in
terms of mean geometric cross section of the biconcave RBC
model and its concentration. At the cell-plasma boundary, the
law of geometric optics was applied to determine probability
and direction of scattering. The RBC model represented by a
3-D biconcave shape having a finite volume and intra-cellular
hemoglobin comprised of 104 nodes and had a total of 5000
interaction patterns with incident photons.

The advantages of the pciMC are that, first, it required neither
macroscopic empirical scattering phase functions nor anisotropy
values as required for the conventional MC code. Second, the
pciMC enabled us to track photon migration through blood
medium reflecting microscopic changes caused by alterations

in RBC orientation, cell size, and cell shape. Third, the model
yielded for the first time the intracellular photon migration from
which optical properties of individual cells could be derived.
The computation time was optimized by the use of look-up
tables to 1.375 times that of the RWMCS (τ_max = 2) code.
The discussion here focuses on validities, peculiarities and lim-
itations of the pciMC model in comparison to the conventional
empirical RWMCS simulation.

5.1 Microscopic Geometric Optics in Blood
We first discuss the validity of geometric optics utilized to ex-
press photon-cell interaction at the cell boundary. Concerning
applicability of geometric optics, Lugovtsov et al.30 reported
that a single RBC scattering can be expressed using geometric
optics approximation, provided the size parameter value defined
as 2πr/λ is larger than 35, where r is the radius of particles, and
λ is the wavelength of light. In our study, the size parameter
value turned out to be 23 for an MCV of 60 μm3 with a wave-
length of 651 nm. Shorter wavelengths could be used to increase
the size parameter value, but with higher absorption of light in
blood. Although the size parameter value of 23 is marginal in
comparison to 35 proposed by Lugovtsov, the pciMC with bi-
concave RBC model showed fairly good agreement with the
experiments for blood layer thickness from 2000 to 4000 μm,
where optical diffusion may be present. In thinner blood layers
from 500 to 1500 μm, coherency of the incident photon di-
rection is maintained and interference takes place between the
incident and scattered photons, increasing the errors between the
simulation and experiments. As photons go through multiple in-
teractions with RBCs, the coherent components are rapidly lost,
resulting in incoherent propagation. In the incoherent field in
thicker blood layers, the interference is diminished. The pciMC
is better suited to describe photon-cell interaction in an optically
diffusing medium.

5.2 Errors Sources
Before discussing the validity of pciMC, sources of errors are
discussed first. A question was raised concerning accuracy of
blood parameters (Tables 1 and 2) used for predictions of OD
and migration time by pciMC and RWMCS. Accuracies of MCV
and MCHC measured by a Coulter counter were verified against
a microcapillary hematocrit method, yielding that the MCV was
accurate to 1.91%, while the MCHC was accurate to 6.0% due
to measurement in two quantities hemoglobin content and blood
hematocrit. We believe the effects of blood parameter accuracies
are far less than those of the time- and space-resolved measure-
ment system and simulation.

The error rates of the pciMC in comparison to the exper-
iments decreased as the blood layer thickness increased. In
addition to the interference effects in the thinner blood layers,
as mentioned in Sec. 5.1, the blood-layer-thickness-dependent
changes in the errors resort to limitation in a streak camera
utilized for measurement of both intensity level and propa-
gation time. In the thin blood layer from 500 to 1000 μm
for short propagation time, it was difficult to differentiate the
differences in propagation delay due to 1 ps resolution of
the streak camera, while in the thick blood layer, intensity
resolution of 0.001 affected the accuracy. In the thick layer,
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(a)

(RBCSmall )

(RBCLarge )

(RBCSmall)

(RBCLarge)

(RBCSmall )

(RBCLarge )

(RBCSmall)

(RBCLarge)

(b) 

RBCSmall

RBCLarge

Fig. 8 (a) Intracellular propagation time and the number of RBCs interacting with photons and (b) percentage of the intracellular propagation time
normalized to the total propagation time predicted by the pciMC for RBC suspensions.

photons that had traveled longer distances due to multiple
scattering effects were not registered because of low intensity,
reducing the contribution of photons having longer propagation
time, hence skewing the propagation time distribution toward
shorter side. In the simulation for both pciMC and RWMCS,
when the photon’s weight became less than 0.001 of the incident
photons as assumed from the streak camera limitation, they
were automatically removed from the analysis. Hence, larger
errors seen for the blood layer thickness of 4000 μm for both
pciMC and RWMCS simulations are due to (1) not counting the
photons with their weight less than 0.001 of the incident photons
and (2) detection limit of the streak camera of lower intensity
light.

In addition, the mismatch in the detector aperture between
the simulation and experiments widened the discrepancies. For
example, by narrowing the detector aperture, propagation time
became faster with the increase in the OD because smaller num-
bers of ballistic or sneak photons having faster propagation time
with reduced optical intensity thus increased OD were captured
by the optical fiber.

5.3 Validity of the pciMC Biconcave RBC Model
To evaluate the validity of pciMC, both the OD and migration
time should be considered, but the OD is a dimensionless num-
ber, ratio between the detected light intensity and the reference
signal level, while the migration time is an absolute number,
hence the latter should be prioritized to validate the pciMC.
The pciMC yielded the mean errors in the migration time of
9.8 ± 6.8% in RBCsmall and 11.2 ± 8.5% in RBClarge averaged
over the blood layer thickness from 2000 to 4000 μm, while the
RWMCS gave considerably higher mean errors of 19.0 ± 5.8%
in RBCsmall and 21.7 ± 19.1% in RBClarge, respectively. There
were statistically significant differences between pciMC and
RWMCS with p < 0.047 in RBCsmall for blood layer thickness
from 2000 to 4000 μm, and p < 0.055 in RBClarge for blood
layer thickness from 2500 to 4000 μm, respectively. These large
differences between the two models may resort to the fact that
the pciMC accounted for different photon velocities from out-
side to inside the cells, while the RWMCS treated RBCs as
points in the space with the photon velocity assumed constant
and estimated using the refractive index of the plasma.
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As for accuracy of predicting OD, in the blood layer thickness
from 2000 to 4000 μm, the RWMCS (τ_max = 2) optimized
through proper selection of anisotropy factor g yielded the mean
error of 6.2 ± 2.6% in RBCsmall and 2.4 ± 2.4% in RBClarge.
Those for pciMC simulation were 14.5 ± 3.3 and 9.1 ± 3.4% in
RBCsmall and RBClarge, respectively, higher than the RWMCS.
The larger deviations from the experiments in the pciMC were
carried over from 500- to 1500-μm thickness where multiple
scattering and interference effects created uncertainties in simu-
lation. Regardless of larger mean errors from 2000- to 4000-μm
blood layer thickness, the slope of OD changes with respect to
blood layer thickness was 0.437 ± 0.052 OD/mm (RBCsmall) and
0.424 ± 0.049 OD/mm (RBClarge), respectively, as compared to
0.431 ± 0.036 OD/mm (RMCsmall) and 0.4281 ± 0.058 OD/mm
(RBClarge) obtained in the experiments. The RWMCS also re-
sulted in good agreement with 0.46 OD/mm (RBCsmall) and
0.42 OD/mm (RBClarge). There were no statistically significant
differences between pciMC and experiments with the mean devi-
ations between them of 1.4 and 0.9% in RBCsmall and RBClarger,
respectively.

In an optically diffusing turbid medium, the light loss as re-
flected in the OD occurs due to absorption of light. The gradient
of OD with respect to sample thickness in an optically diffus-
ing medium indicates absorption properties of the medium.35

Based on this rational, we can say that the fairly constant OD
gradients expressed by the pciMC and the experiments for the
blood layer thickness from 2000 to 4000 μm reflect absorp-
tion properties of the medium. Since the photon absorption in
the pciMC model occurs inside the RBCs relating to intracel-
lular propagation time and MCHC of RBCs, and since in the
experiments it occurs when photons collide with RBCs, the ex-
cellent agreement in OD gradients between the pciMC and the
experiments supports the validity of pciMC for predicting prop-
agation time of photons in the turbid, optically diffusing blood
medium.

The pciMC is better suited to describe photon-cell interac-
tion in an optically diffusing medium as mentioned in Sec. 5.1.
The RWMCS, on the other hand, can describe the multiple
scattering anisotropies with the accuracy confirmed10, 11 for the
optical depth τ< 2. In the boundary region between the mul-
tiple scattering and the optical diffusion region, from 500- to
1000-μm medium thickness, with the optical depth τ of around
66 to 132, the use of RWMCS and pciMC will result in errors,
because both coherent and incoherent components of light are
present.

5.4 pciMC Biconcave versus Spherical RBC Model
Concerning the cell shape, the pciMC with biconcave RBC
model yielded better agreement with the experiments than the
spherical RBC model. As expected, the spherical RBC model
showed higher scattering probability in the forward direction
around a 0-deg angle (Fig. 5). Figure 5 also showed a compar-
ison with the Henyey-Greenstein phase function. The spherical
model showed similar trend to the Henyey-Greenstein scattering
phase function in the 0- to 5-deg range. Roggan12 commented
that the Henyey-Greenstein scattering phase function overesti-
mates the forward scattering by RBCs. Roggan’s speculation
was verified in our study, because the pciMC with sphere RBC
model also estimated faster propagation time similar to Henyey-

Greenstein phase function. In contrast, pciMC with a biconcave
model resulted in lower forward scattering with better accuracy
in photon migration.

Regarding OD predictions by pciMC for a spherical model,
the OD gradients in the 2000- to 4000-μm blood layers
were larger with 0.53 OD/mm (RBCsmall) and 0.59 OD/mm
(RBClarge), respectively, than the experiments. Hence the util-
ity of pciMC with sphere model would be lower than that of
biconcave model.

5.5 Intracellular Photon Migration Time
The pciMC simulation provided the intracellular photon migra-
tion based on the geometric optics. This analysis is the estimation
that cannot be verified experimentally using the current or other
setups. The intracellular photon migration time increased almost
exponentially as the blood layer thickness increased [Fig. 8(a)],
while the percentage of intracellular migration time to the to-
tal propagation time decreased with the blood layer thickness
[Fig. 8(b)]. The numbers of photon-RBC interaction increased as
the blood layer thickness increased. As the photon-RBC interac-
tion increases, the scattering angle from the main axis increases
with the multiply scattered photons going out of the detector
site. The reduction in the percentage of intracellular migration
time can be speculated such that as the blood layer thickness in-
creases, the detection percentage of photons that have interacted
less numbers of RBCs propagating in the forward small angles
increase. Since those photons that have interacted with fewer
RBCs have a shorter intracellular migration time, the percent-
age of intracellular migration time decreases [Fig. 8(b)]. Also,
the cutoff threshold of 0.001 used in the simulation and the de-
tection capability of the streak camera contributed to the reduced
percentage of the intracellular migration time for photons that
have traveled a longer distance with a weight of less than 0.001
were eliminated from the analysis.

5.6 Usage of pciMC Model
Now that a pciMC model has been developed, we can propose
very interesting analysis of microscopic interaction between
photons and RBCs. We have been engaged in noninvasive and
real-time diagnosis of blood in terms of hematocrit, hemoglobin
content, and oxygen saturation during extracorporeal circulation
support. To achieve our goal, the microscopic light scattering and
absorption model of RBCs under blood flow must be developed.
Since the conventional MC simulation expresses the RBC as a
point in space using a macroscopic scattering expression such
as an empirical anisotropy value and a phase function, it cannot
quantify scattering changes as a function of RBC shape, orien-
tation, and distribution in the flow. We believe the pciMC can
provide direct understanding of these effects. Also, the compu-
tational fluid dynamics (CFD) for the blood flow within the car-
diovascular devices such as rotary blood pumps are required for
the optimal development of devices.36 By connecting CFD and
pciMC, the relationship between the blood stream and the RBC
distribution may be understood. Thus, pciMC may contribute to
blood rheology and the development of cardiovascular devices.
In diagnosing and treating various diseases, the pciMC may be
useful to differentiate normal and abnormal blood cells through
quantification of the optical properties such as transmission,
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reflection, and intracellular propagation time in individual RBCs
without relying on any empirical parameters. The newly devel-
oped pciMC will contribute to early diagnosis and treatment
of the diseases through quantification of optical parameters of
blood cells.

6 Conclusion
The pciMC model treating optical interactions at the plasma-
cell boundary based on the geometric optics quantified for the
first time the OD and migration time of photons by tracking
photons both extra- and intracellular spaces. The pciMC did
not require empirical quantities such as anisotropy factors and
scattering phase functions as required for the conventional MCs.
The pciMC based on the geometric optics can be best utilized
to quantify photon migration in the optically diffusing medium
such as blood whose feature may be useful in diagnosing status
of blood cells.

7 Appendix: Computation of Intracellular
Photon Pathways

M1=Pn ,
Mk(k � 2),

was decided by

1. COND1: Uk−1 · A > 0,

2. COND2: Uk−1 · B > 0,

3. COND3a: a or b was satisfied.
a. (M(k−1)x � 0 ∩ Mkx � 0) ∪ [M(k−1)x � 0 ∩ Mkx � 0]
b. On the line equation connecting M(k−1)x and M(k−1)z ,

when x = 0, the value |z| < r (0). Hence,

|z| =
∣∣∣∣−M(k−1)x [Mkz −M(k−1)z]+M(k−1)z[Mkx −M(k−1)x ]

Mkx−M(k−1)x

∣∣∣∣
× r (0).

4. COND3b: In COND3a, M(k−1)x and Mkx are replaced
byM(k−1)y and Mky , respectively.

5. COND4: Uk−1 · B/|B| should be close to 1.0

In the preceding equation, Mk−1 = [M(k−1)x , M(k−1)y,

M(k−1)z] is the scattered point on the (k-1)’ th interaction, and
Uk−1 = [U(k−1)x , U(k−1)y, U(k−1)z] is the vector for photons trav-
eling inside RBC on (k-1)’ th interaction. Here A is the normal
vector at the scanning points, and B is the vector joining from
point Mk−1 to the current scanning point Mk . COND3 is re-
quired to prevent the B vector from cutting across the biconcave
section and reentering the other side. COND4 ensures that Bis
at parallel with Uk−1.

At the same time of deriving point Mk , the scattered vector Nk

is also calculated; N1 and Nk(k � 2) are based on the reflection
law at the incident point and Snell’s law at the scattered point,
respectively.
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