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Abstract. Microaneurysms (MAs) are the first manifestations of the di-
abetic retinopathy (DR) as well as an indicator for its progression. Their
automatic detection plays a key role for both mass screening and mon-
itoring and is therefore in the core of any system for computer-assisted
diagnosis of DR. The algorithm basically comprises the following stages:
candidate detection aiming at extracting the patterns possibly corre-
sponding to MAs based on mathematical morphological black top hat,
feature extraction to characterize these candidates, and classification
based on support vector machine (SVM), to validate MAs. Feature vector
and kernel function of SVM selection is very important to the algorithm.
We use the receiver operating characteristic (ROC) curve to evaluate
the distinguishing performance of different feature vectors and differ-
ent kernel functions of SVM. The ROC analysis indicates the quadratic
polynomial SVM with a combination of features as the input shows the
best discriminating performance. C©2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3523367]
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1 Introduction
Diabetic retinopathy (DR) is one of the most serious and most
frequent eye diseases in the world. It is a complication of diabetes
and the most common cause of blindness in adults. In order to
prevent the damage of DR, it is very important to diagnose DR
early. The analysis of digital retinal images (Fig. 1), obtained by
the fundus camera, is viewed as a feasible approach because the
acquisition of the retinal image is nonintrusive and low cost.

There are two categories of analysis based on retinal images.
One is morphological analysis on arteries, veins, and optical
cup.1 The other is based on the detection of the pathology le-
sion, such as hemorrhages, microaneurysms (MAs), hard exu-
dates, and cotton wool spots.2, 3 MAs are the first unequivocal
signs of DR, which appear as small reddish isolated patterns of
circular shape in color fundus images. They are characterized by
their diameters, which are always <125 μm.4 Because they are
situated on capillaries and capillaries are not visible in color reti-
nal images, they appear as isolated patterns (i.e., disconnected
from the vascular tree).

In this paper, we propose a new method to optimize the al-
gorithm to identify MAs. The algorithm for automatic detection
of MAs generally comprises three steps. The first step aims
at detecting candidates i.e., all patterns possibly correspond-
ing to MAs based on a mathematical morphological black top
hat. Then, features are extracted to characterize these candi-
dates. And finally, a support vector machine (SVM) is used to
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distinguish MAs from all candidates. We use the receiver oper-
ating characteristic (ROC) curve to evaluate the distinguishing
ability of different feature vectors and different kernel func-
tions of SVM in this paper. Thus, the optimal feature vector and
classifier can be determined by ROC analysis.

2 Automatic Detection of MA
2.1 Candidates Detection-Based Morphological

Operation
Mathematical morphology operation is a way of nonlinear fil-
tering used for image processing.5 The primary operations of
mathematical morphology are dilation and erosion, denoted by
⊕ and �, on which other operations are based, such as opening
and closing operations. In this paper, we use a black-top-hat
transform. It can extract dark objects and structures in gray im-
ages. In the RGB images, the green channel exhibits the best
contrast. We work on the gray image from the green channel,
denoted by f. In the gray image f, MAs appear as dark patterns,
small, isolated, and of circular shape.

Black-top-hat transform is the first closing operation on the
image f and then subtracting the original image, defined as

fb = ( f • e) − f, (1)

where e is a structuring element and f • e means closing oper-
ation to f with e. The morphological closing operation dilates
an image f and then erodes the dilated image using the same
structuring element, which is defined as follows:

f • e = ( f ⊕ e) � e. (2)
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Fig. 1 Fundus retinal image (a MA marked with an arrow).

The blood vessels in the retinal images are usually considered
as piecewise linear structures at different orientations. A total of
12 rotated linear structures are used with a radial resolution of
15 deg. The length of a linear structuring element should be such
that it is larger than MAs in retinal images. MAs appear as dark
patterns within s pixels, which is <125 μm. Thus, the length of
the linear-structuring element must be longer than s pixels and s
is variable for different sizes of original images. For each pixel,
record the minimum response as the closed result applied with
those 12 rotated linear-structuring elements. Then, we obtain the
image fb by subtracting the original gray image from the closed
image. The image fb contains MAs, which appear as the local
bright regions in Fig. 2(a).

Only a certain number of candidates are reasonable (for ex-
ample, several dozens for each image). A matched filter is used
to extract regions of interest (ROI) from fb. The matched fil-
ter is a 2-D Gaussian function with σ = 1 and has a size of
s×s pixels. Gaussian difference dG is an index image to evalu-

ate the difference between the local region in fb and Gaussian
function, calculated as

dG(i, j) =
∑

i ′, j ′∈S [ fb(i ′, j ′) − g(i ′, j ′)]2

s2
, (3)

where g is the normalized 2-D Gaussain function centered at
(i, j) and (i ′, j ′) is the pixel position within the local region of
fb centered at (i, j), with size of s×s pixels. Thus, dG(i, j) is
summed over all the pixels (i ′, j ′) in the s×s region, and this
local region is denoted by S in Eq. (3).

The ROI are the local bright regions in fb with lower
Gaussian difference value [dG(i, j)]. They are extracted by a
global threshold of Gaussian difference. Each ROI has a size of
s×s pixels and is recorded by its center coordinates for facili-
tating to extract corresponding ROI from different source. The
binary candidate region of each ROI is determined by threshold-
ing, which minimizes the intraclass variance of candidate and
surrounding [shown in Fig. 2(b)].

2.2 Feature Extraction for Candidates
Because MAs are mainly characterized by their shape, size, and
color, we use three types of features as follows:

1. shape features, such as relative size and compactness of
candidate

2. texture features based on the gray-level co-occurrence
matrix (GLCM) of ROI from the green channel

3. color features within the ROI from different color space

Shape is one of the essential characteristics of the object,
which provides meaningful information. The Shape feature can
be divided into two categories: one is based on the boundary
of the candidate and the other is based on the region. We use
the relative size and compactness to describe the shape of can-
didates. Each ROI is a region of s×s pixels, where s depends
on the size of the original image to ensure the length of s pixels
is not <125 μm. The binary candidate of each ROI is obtained
by thresholding the ROI, making the surrounding black and the

Fig. 2 (a) Image after black-top-hat transform and (b) binary image after matched filter.
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candidate white. In the binary ROI, area A and perimeter P
of the candidate is calculated. Relative size, s1, is defined as
the ratio of area of candidates and ROI. Compactness, s2, is
used to describe circularity of the shape of candidate, which is
defined as

s1 = A/s2,

s2 = 1 − 4π A/P2,
(4)

where A is the number of pixels in a candidate and P is the total
number of pixels around the boundary of the candidate.

Texture is a significant property in digital images. It has an
important role in human visual perception and offers informa-
tion for recognition and interpretation. The GLCM is a pow-
erful statistical tool that has proved its usefulness in a variety
of image-analysis applications. It captures second-order gray-
level information, which is mostly related to human perception
and the discrimination of textures. It is common practice to
utilize the 14 well-known Haralick’s coefficients as the GLCM-
based features.6 The coefficients are usually calculated from the
average GLCM obtained by averaging the matrices calculated
for 0-, 45-, 90-, and 135-deg directions. In this work, we first
convert the gray scale of each ROI to 11, then calculate the
average GLCM, C̄ . Last, we select four coefficients based on
GLCM. They are energy t1, contrast t2, local homogeneity t3, and
entropy t4.

t1 =
N∑

i, j=1
C

2
(i, j),

t2 =
N∑

i, j=1
(i − j)2C(i, j),

t3 =
N∑

i, j=1

1

1 + (i − j)2
C(i, j),

t4 =
N∑

i, j=1
C̄(i, j) log C(i, j).

(5)

Intensity is the only available information in the gray image,
but color images provide more abundant color information, ex-
cept intensity. The color contrast is a useful feature. It is defined
as the sum of squared differences between the candidate region
and its surroundings.4 We extract color features in RGB color
space first, defined as

c1 = [μext(R) − μint(R)]2,

c2 = [μext(G) − μint(G)]2,

c3 = [μext(B) − μint(B)]2,

(6)

where μint is the mean value on the candidate region and μext is
the mean value on the surroundings in each ROI, and R, G, B
in parentheses represent that the calculation is executed in R, G,
and B channels, respectively.

The selection of these color features is a complicated task due
to the variety of color models. The RGB space of the original
image is transformed to hue, saturation, and value space (HSV)
because HSV color space is more appropriate since it allows
the value component to be separated from the other two color
components. Then we extract two kinds of color feature from
the hue and saturation components as

c4 = [μext(H ) − μint(H )]2,

c5 = [μext(S) − μint(S)]2.
(7)

In order to select the optimal feature vector, we construct
several feature vectors, denoted by S, T, C1, C2, A1, and A2.
Here, S = [s1,s2], T = [t1,t2,t3,t4], C1 = [c1,c2,c3], C2 = [c4,c5],
A1 = {S,T,C1}, and A2 = {S, T,C2}. We test these feature
vectors by SVM in Section 2.3.

2.3 Validation of MA Based on SVM
The SVM, first introduced by Vapnik, is a learning algorithm
for two-class classification. It is widely used in pattern recog-
nition applications. It is based on strong foundations from the
broad area of statistical learning theory according to structural
risk minimization. A SVM is known for its good performance.
The basic principle behind a binary SVM is to find the hyper-
plane that best separates vectors from both classes in feature
space while maximizing the distance from each class to the
hyperplane.7 There are both linear and nonlinear approaches
to a SVM. If the two classes are linearly separable, then the
SVM attempts to find the optimal separating hyperplane by
maximizing the margin between both classes. The margin is
2/‖w‖2. For a linear SVM, to find the optimal hyperplane is
equal to min 1

2 ‖w‖2. When the two classes are nonlinearly sepa-
rable, the SVM computes the optimal separating hyperplane by
minimizing the following equation:

J (w) = 1

2
‖w‖2 + C

N∑

i=1

ξi , (8)

where the constant C > 0 is user defined and determines the
trade-off between the maximization of the margin and mini-
mization of the classification error and ξi are slack variables
introduced for nonlinearly separable classes.

Different kernel functions determine the classification per-
formance of the SVM. Thus, the selection of the kernel function
is important to the SVM. We compare the performances of
commonly used kernel functions based on the receiver opera-
tion characteristic (ROC) curve. The commonly used kernels are
defined as

Linear function: K (x1, x2) = 〈x1, x2〉,
Polynomial (poly): K (x1, x2) = (〈x1, x2〉 + 1)p,

Gaussian radial basis function (rbf): K (x1, x2) = e−|x1−x2|2
/

2σ 2
,

(9)

where p is order of polynomial and usually takes 2 or 3 and σ is
width of the rbf and controls its functionary range.

3 Optimizing Features Vector and Classifier
Based on ROC Curve

The ROC is a performance measure commonly used to compare
different classifiers. The ROC curve can be drawn using sensi-
tivity as the x coordinate and 1-specificity as the y coordinate.8

Sensitivity describes the probability of a positive test among all
positive samples and indicates the probability of a negative test
among all negative samples. Therefore, the diagonal in an ROC
plot is the performance of random guessing. The ROC curves
move toward the upper left corner, indicating rising accuracy of
performance. The area under the ROC curve (AUCROC) is an ap-
propriate performance measure. The AUCROC value ranges from
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Table 1 Sensitivity and specificity of different feature vectors for SVM.

T A1 A2

Feature Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

1 0 1 0 1 0

0.6121 0.7494 0.9720 0.0735 0.6916 0.7606

0.5935 0.7806 0.8879 0.3062 0.6541 0.7873

0.4860 0.8608 0.7991 0.5412 0.5981 0.8396

0.4533 0.8719 0.6963 0.6158 0.4907 0.8998

Data 0.3972 0.9020 0.5981 0.7595 0.3972 0.9388

0.3551 0.9287 0.4860 0.8686 0.3037 0.9610

0.2991 0.9465 0.3925 0.9020 0.2897 0.9621

0.1963 0.9666 0.2944 0.9399 0.1822 0.9788

0.0935 0.9889 0.1963 0.9699 0.1449 0.9866

0 1 0 1 0 1

AUC 0.7093 0.7359 0.7574

0.5 to 1. The larger the AUCROC is and the closer it is to 1.0, the
higher the validity of the classifiers is. Conversely, the nearer the
AUCROC is to 0.5, the lower the validity of the classifiers is. If
AUCROC is 1, then this means the classifier is perfect.

4 Results and Discussion
4.1 Sample Sets
MAs can easily be confounded with other dark patterns. One
of the major problems in detection of a MA is to establish

Table 2 Sensitivity and specificity of different kernels of SVM.

Linear rbf Poly 2 Poly 3

Kernel Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

1 0 1 0 1 0 1 0

0.6963 0.6915 0.7103 0.4788 0.6916 0.7606 0.6355 0.7650

0.5935 0.8107 0.6963 0.5078 0.6541 0.7873 0.5888 0.8274

0.4860 0.8864 0.5981 0.6537 0.5981 0.8396 0.4953 0.8391

0.4439 0.9065 0.4953 0.7706 0.4907 0.8998 0.4597 0.9198

Data 0.3925 0.9354 0.4533 0.8241 0.3972 0.9388 0.3972 0.9410

0.3598 0.9399 0.3972 0.8664 0.3037 0.9610 0.3598 0.9488

0.2897 0.9577 0.2991 0.9410 0.2897 0.9621 0.2944 0.9677

0.1963 0.9800 0.1916 0.9577 0.1822 0.9788 0.1963 0.9800

0.0981 0.9944 0.1262 0.9766 0.1449 0.9866 0.1729 0.9866

0 1 0 1 0 1 0 1

AUC 0.7427 0.6677 0.7574 0.7364
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Fig. 3 ROC curves for different feature vectors.

a “gold standard,” namely, a set of annotated samples for
learning and testing. In this paper, we used the 50 annotated reti-
nal images from the Retinopathy Online Challenge database.9

The 50 images were from patients with diabetes without known
diabetic retinopathy at the moment of photography; they rep-
resent a random sample of unique patients with “red lesions”
from a large (>10,000 patients) diabetic retinopathy screening
program. These images were taken with Topcon NW 100, NW
200, or Canon CR5-45NM “nonmydriatic” cameras at their na-
tive resolution and compression settings. The retinal specialist
annotations were obtained from a combination of three ophthal-
mologists with retinal fellowship training. The first 20 images
are for training, whereas the remaining 30 are for testing in this
paper.

We extract all annotated MA regions as true positive samples
and ∼30 spurious objects as true negative samples from each
training image and construct a training sample set, size of 727.

Fig. 4 ROC curves for different kernels of SVM.

Fig. 5 Threshold for SVM.

And we obtain a test sample set, size of 1112, in the same
manner.

4.2 Experimental Results
In order to identify the most favorable feature vector to distin-
guish real MAs from spurious objects, the feature vector shape
features S, texture features T, and color features C1, C2, and
the different combinations of them, A1 and A2, are respectively
used as the input of the SVM. ROC curves for different feature
vectors are shownin Fig. 3.

The diagonal in Fig. 3 is the ROC of the SVM using C1 or
C2 or S as feature vector, separately. They are laid over each
other and have no diagnostic value. The ROC for T, A1, and A2
have higher AUCROC. Table 1 shows that the ROC for A2 has
the highest AUCROC and the optimal classification performance
among these feature vectors.

An SVM with different kernel functions has a significant
difference of classification performance. In this paper, the com-
monly used kernel functions, such as linear function, Gaussian
rbf, and polynomial kernel, are discussed. Figure 4 shows these
ROC curves of SVM using these different kernel functions, and
the best result is obtained by using the polynomial function ker-
nel with p = 2. Table 2 shows that the ROCs for linear and
polynomial functions have higher areas than the one for rbf, and
the ROC for the polynomial function with p = 2 has the largest
AUCROC value (0.7574), which is slightly larger than the one
for the linear function. This indicates that the SVM using the
polynomial function with p = 2 has the highest classification
performance among the above-mentioned kernels.

Different thresholds can bring different classification results.
Thus, the threshold is very important for classification perfor-
mance of the classifier. Here, sensitivity × specificity is used
as a performance measure to determinate which threshold has
the better diagnostic value.9 When threshold is set at − 0.9,
sensitivity × specificity reached its maximum, as shown in
Fig. 5. Because the threshold of classification is − 0.9, the sen-
sitivity is 64% and the specificity is 80%.
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5 Conclusion
In this paper, we present a new method to optimize the algorithm
of automatic detection of MAs. The MA detection algorithm
comprises three steps: candidate detection, feature extraction,
and classification. We use a ROC curve to evaluate the distin-
guishing ability of different feature vectors and different kernel
functions of an SVM. The feature vector A2 has the highest
AUCROC in Fig. 3 and is used for the input of an SVM, and
the polynomial function kernel with p = 2 shows the best dis-
criminating performance according to those the ROC curves in
Fig. 4. As mentioned above, the ROC curve is a useful technique
for estimate classification performance of classifiers. It can be
used to select the appropriate feature vector and to optimize the
classifier.
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