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Abstract. The concentrations of blood and melanin in skin can be estimated based on the reflectance of light.
Many models for this estimation have been built, such as Monte Carlo simulation, diffusion models, and the
differential modified Beer–Lambert law. The optimization-based methods are too slow for chromophore mapping
of high-resolution spectral images, and the differential modified Beer–Lambert is not often accurate enough.
Optimal coefficients for the differential Beer–Lambert model are calculated by differentiating the diffusion model,
optimized to the normal skin spectrum. The derivatives are then used in predicting the difference in chromophore
concentrations from the difference in absorption spectra. The accuracy of the method is tested both computationally
and experimentally using a Monte Carlo multilayer simulation model, and the data are measured from the palm of a
hand during an Allen’s test, which modulates the blood content of skin. The correlations of the given and predicted
blood, melanin, and oxygen saturation levels are correspondingly r = 0.94, r = 0.99, and r = 0.73. The prediction
of the concentrations for all pixels in a 1-megapixel image would take ∼20 min, which is orders of magnitude
faster than the methods based on optimization during the prediction. C©2011 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.3562976]
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1 Introduction
The reflectance spectra of human skin can be used to study
its physical structure and chemical contents. The reflectance
spectra measurement is a fast and convenient method for
obtaining dermal information. The spectra can be measured
using a spectrophotometer or with a multiband digital imaging
device. In reflectance spectroscopy, the skin is illuminated with
a light source and the spectra of the reflected light is measured.
Often visible and near-infrared (NIR) light are used for
measurements because they penetrate deeper into the skin than
the longer or shorter wavelengths. The measured reflectance
spectra can be used in estimation of the distributions of the
skin chromophores, such as melanin and hemoglobin. These
chromophore maps may help in diagnosing and following up on
skin disorders. Therefore, chromophore mapping is a common
topic in the skin-imaging literature.1–7 Several commercial tech-
nologies have been developed especially for measuring the skin
chromophore concentrations, such as DermaSpectrometer R©,
Mexameter R©, Chromameter R©,6 EMM-01,7 SIAScopy R©,8 and
TIVI R© imaging.9 Comparative measurements of erythema and
melanin indexes using the EMM-01 and Mexameter MX-16
(Courage + Khazaka electronic GmbH, Cologne, Germany)
devices as well as color measurements with the Minolta
Chromameter CR-200b (Higashi-Ku, Japan) were performed
in Ref. 7.

Address all correspondence to: Petri Välisuo, University of Vaasa, Department of
Electrical and Energy Engineering, Automation Technology, Wolffintie 34, Vaasa,
L nsi-Suomi 65101 Finland. Tel: 358445804320; Fax: 358-6-324 8677; E-mail:
petri.valisuo@uwasa.fi.

Because the light interaction in skin is complicated, there is
no single method for chromophore concentration estimation that
is the best for all purposes. Therefore, many different methods
are frequently used in skin analysis. These methods are listed
in recently published reviews.10, 11 One of the most versatile
methods for this purpose is Monte Carlo simulation, for exam-
ple, the Monte Carlo multilayer (MCML) software.12–14 It is
relatively easy to include the absorption of all important skin
chromophores and scattering factors into the model. Notwith-
standing the long simulation times, the model has been used
for many purposes, such as in the development of the pulse
oximeter,15 melanoma diagnostics,16–18 melanin- and blood-
concentration measurements,19, 20 skin-treatment planning,21

and determination of the information depth of the skin
reflectance.22

Another often-used method for modeling light transport
in skin is the diffusion approximation of the light transport
equation.23, 24 Diffusion approximation is expressed as a math-
ematical formula that can be calculated much faster than the
MCML model but it is less versatile. However, solving of in-
verse problems is required by means of an optimization algo-
rithm, such as that of Levenberg–Marquardt (LMA).

Most solutions, aiming at even faster processing, are based
on the Beer–Lambert law (BLL), which is the profound theory
behind chemometry. The BLL states that the absorption A, of
light transmitted through a substance, whose thickness is d is
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directly proportional to the absorption coefficient, μa of the
substance.

A = μad. (1)

The absorption coefficient is the product of the molar extinc-
tion coefficient ε and the concentration c of the chromophore

μa = c ε. (2)

This law strictly holds only for light transmission when scat-
tering is negligible. However, the scattering in skin is strong;
thus, Beer–Lambert as such does not hold. On the other hand,
the backscattering makes it possible to use the reflection-
measurement setup instead of transmission, which is much more
convenient for in vivo measurements. The goal for many re-
searchers has been to modify either the BLL or the reflectance-
measurement setup so that the BLL could be applied.

In scattering media, the photons do not follow direct path.
Therefore, the thickness, d, must be replaced with a mean path-
length, p, of the photon, which is usually unknown, and depends
on the absorption and scattering. Furthermore, photons are scat-
tered in all directions, and only a small amount of them are
captured by the detector, resulting in a scattering loss, which
is often modeled as an additive term G. The modified Beer–
Lambert law (MBLL), takes also into account these additional
parameters,25, 26

A = μa p + G. (3)

Because of the constant, unknown term, G, the absolute ab-
sorption coefficient values cannot be solved from known absorp-
tions. If it is assumed that the scattering loss is constant, then the
term G disappears when examining the differences of absorp-
tions. Therefore, the MBLL is often used in a differential form,
known as differential modified Beer–Lambert law (dMBLL),

∂

∂μa
A = ∂

∂μa
μa p. (4)

The dMBLL, shown in Eq. (4), is described in Ref. 27, as well
as the error caused by assuming G as constant when it is not. If
the pathlength, p, is not dependent on μa, then the derivative of
absorption is just the pathlength and the dMBLL is linear. If ei-
ther p or G is dependent on μa, both A and ∂ A/∂μa are nonlinear.
In many papers, ∂ A/∂μa is assumed to be linear.3, 27–29

Mourant et al. found that in a special measurement setup,
where light is illuminated from one optical fiber and collected
from another so that the distance between the fibers is between
1.5 and 2.2 mm, the mean pathlength of the photons is only
slightly dependent on the changes on the scattering coefficient.30

In this case, the dMBLL holds well, provided that the p(μa) can
be modeled. Mourant et al. used a model p(μa) = x0 + x−x2μa

1 ,
where xi are experimental coefficients.

Amelink and Sterenberg31 made a special measurement de-
vice where light is fed using one emitter fiber and detected by
two fibers, simultaneously. The first detector fiber (de) is the
emitter fiber itself, and the second (d) is a separate fiber located
close to the emitter. The difference of the two detected signals is

said to mostly contain the effect of the single scattered photons.
In this case, the average pathlength p is constant, the dMBLL
is linear, and actually, the Beer–Lambert could be applied as
such.31

Unfortunately, these special measurement setups cannot be
used for chromophore mapping because they lack the spatial
dimensions. A method that is fast and accurate enough for chro-
mophore mapping of images with high spatial and modest spec-
tral resolution is needed in a skin-imaging system, such as the
Spectrocutometer.4, 32 The new approach taken in this paper is
to apply dMBLL to solve chromophore maps from digital im-
ages, linearizing the dMBLL model around an operating point
deduced from the normal skin spectra of the individual. For the
linearized model the partial derivatives of the absorption by the
absorption coefficients of each chromophore are needed. These
derivatives are obtained by constructing a two-layer skin model
using the Beer–Lambert law and diffusion model and by differ-
entiating the model analytically. The constructed model is first
fitted to one selected absorption spectrum, using LMA optimiza-
tion, to find the chromophore concentrations. The derivatives
are then used to find the differences of the chromophore con-
centrations for the other spectra using dMBLL in closed form.
The method is tested by comparing it to the MCML simulation
model.

2 Materials and Methods
Melanin, oxyhemoglobin, and deoxyhemoglobin are the most
important chromophores in skin. In healthy skin, melanin is de-
posited in epidermis, whereas hemoglobin is dissolved in blood,
which is located deeper in the skin, in the dermis. The absorption
of the epidermis is μa,epe, where μa,e = cmεm is the absorption
coefficient of epidermis, which equals to the concentration of
melanin, cm, times the extinction coefficient of melanin, εm.
The absorption coefficient of blood, μb, depends on the ab-
sorption coefficients of the chromophores in blood, oxygenated
hemoglobin, μa,HBo, and deoxygenated hemoglobin, μa,HBd. The
absorption of blood is therefore μa,bpd = (μa,HBo + μa,HBd)pd

where pd is the average pathlength of photons in dermis. Usu-
ally, the absorption coefficient of dermis itself, is modeled as
skin baseline, μa,dpd. Therefore, the equation describing the at-
tenuation of skin, can be written as follows:

A = μa,e pe + μa,b pd + μa,d pd + G. (5)

The epidermis is weakly absorbing by itself, but the melanin
deposited primarily in the bottom of the epidermis, in stratum
basale, absorb light strongly. Because the epidermis is thin,
de ≈ 100 μm, and it is the topmost layer, the mean pathlength
of a remitted photon in the epidermis is not affected much by
the absorption of dermis or epidermis. Therefore, the derivative
of Eq. (5) by the absorption in the epidermis, is approximately

∂ A

∂μa,e
≈ pe. (6)

On the other hand, the mean pathlength in dermis, pd, is
dependent on the absorption coefficient in blood and in dermis. If
μa,b, is high, then only the photons remitted from the superficial
layers in the dermis will survive back and the average pathlength
in the dermis will be short. Therefore, the derivative of Eq. (5)
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by the absorption in blood, μa,b, is more complicated,

∂ A

∂μa,b
= pd + μa,b p′

d + μa,d p′
d, (7)

where p′
d = ∂pd/∂μa,b. The first term corresponds to the basic

Beer–Lambert law. The second term adds a nonlinear component
due to the nonconstant pathlength. The third term is cross-talk
from absorption of dermis to absorption of blood.

2.1 Diffusion Model
Equation (7) cannot be used for calculating concentration
changes because pd is not known. The model based on diffu-
sion theory, introduced by Farrell et al.24 and Patterson et al.,23

can be used for obtaining the partial derivatives needed. The
diffusion model assumes a pencil-beam-shaped light source. It
is further assumed that the light beam can be replaced with
a point source located at the depth of the mean free path,
z0 = 1/(μ′

s + μa), under the skin surface and the correspond-
ing image source at the height of 2 zb + z0 from the skin sur-
face, where zb = (2 K)D is the height of the virtual boundary,
where K is the internal reflection, which is assumed to be K
= (1 + rd)/(1 − rd), where rd is the reflectance coefficient mis-
match in the air-tissue boundary and D = z0/3 is the diffusivity
coefficient. The diffusion reflectance can be modeled by means
of transport albedo μ′

a = μ′
s/(μ′

s + μa), and internal reflection
K. A more accurate model is obtained by assuming that there is
a point source in every point along the pencil beam in the tissue,
in which intensity along the depth, z, is I (z) = μ′

aμ
′
te

−μ′
tz , where

μ′
t = μa + μ′

s is the total interaction coefficient. Therefore, the
total reflectance, Rd, of infinite narrow beam is24

Rd = μ′
a

2

1 + e−4/(3K )T

1 + T
, (8)

where

T = √
3(1 − μ′

a). (9)

The absorption, Ad, of radiation in tissue is

Ad = log(1/Rd). (10)

The derivative of Eq. (10) by absorption coefficient, μa, is

∂ Ad

∂μa
= z0

2(T + 1)

[
2(T + 1) + 3z0μ

′
s

T

+4K z0μ
′
s(T + 1)e−4/(3K T )

T (e−4/(3K T ) + 1)

]
.

(11)

The epidermis and dermis are the two most important layers
for optical skin models. The dermis can be further subdivided,
but it may not be always necessary. Here, the skin model assumes
a thin epidermis layer situated on top of the dermis layer. The
absorption in epidermis, Ae, is modeled simply using BLL, so
that Ae = μa,epe, where the average pathlength in epidermis,
pe, is slightly longer than the thickness of the epidermis, de.

The absorption of dermis is modeled using the diffusion model,
described in Eq. (10). The specular reflectance is assumed to be
wavelength-independent constant.

Fig. 1 Edge losses and edge-loss compensation. The gray lines show
the detected reflectance as a function of wavelength, from bottom to
top, ra is 0, 0.1, 0.2, 0.3, . . . , 1.5 cm. The lower solid thick line shows
the simulated detected reflectance, whereas the lower thick dashed
line shows measured spectra. The upper thick and dashed lines show
the simulated and measured spectra after edge loss compensation.

2.2 Edge Losses
One of the data sets used in this paper is measured using an
integrating sphere, which is often used as an optical probe for
reflection measurements. However, it introduces some nonideal
characteristics that must be taken into account. The integrating
sphere illuminates the target at the area of its aperture, which is
the radius ra. It collects the specular and diffuse reflectance only
from the area covered by the aperture. However, part of the dif-
fuse reflectance is remitted from the area behind the edge of the
aperture and part of the reflectance is therefore lost. To reduce
edge losses, some integrating spheres contain a lens system that
can be used either in focusing the illumination into a narrow
collimated beam or limiting the detection area. To estimate the
edge losses of an integrating sphere with a lens system used for
illumination, an MCML simulation was performed with a colli-
mated circular light beam of radius rb = 0.15 cm and aperture
of radius ra = 0.5 cm, which are the properties of the integrating
sphere used in the Allen’s test measurements. The result of the
MCML simulation is a radial cross section of the reflectance
intensity. The intensity of the total collected reflectance can be
obtained by integrating the reflectance intensity curve over a
circle of radius ra. The detected reflectance and the edge losses
should be the same in a symmetrical case, where the integrating
sphere is used for providing diffuse light in the circular area, of
radius, ra, and the lens system is used for limiting the detection
in the circular area of radius, rb The results of the simulation are
shown in Fig. 1.

The detection efficacy of the integrating sphere was calcu-
lated by dividing the reflectance obtained using the real aperture
radius with the reflectance using very large aperture radius, cap-
turing virtually all reflected signal,

η(λ) = R(λ)|ra=0.6 cm

R(λ)|ra=1.5 cm
. (12)

According to MCML simulation, the losses are negligible
when wavelength, λ, is smaller than λt = 580 nm. When λ

> λt, η(λ) can be modeled as an exponent function. Therefore,
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Fig. 2 Detection efficacy due to edge losses. The solid line shows
the simulated detection efficacy and dashed line shows the detection
efficacy model.

the detection efficacy is

η(λ) =
{

1 if λ ≤ λt

EL + (1 − EL)ek(λt−λ) if λ ≤ λt,
(13)

where EL is the edge loss coefficient, describing the maximum
detection efficacy in the NIR range, and k is an experimental
constant. For simulated skin parameters and given integrating
sphere geometry, EL = 0.8 and k = 0.02. The simulated and
modeled η(λ) are shown in Fig. 2.

The detection efficacy model was further tested by plotting
one spectra from the Allen’s test data, before and after the edge
loss compensation. These measured spectra are also shown in
Fig. 1.

2.3 Total Skin Reflectance Model
The total absorption of the skin, when the diffusion model of
the dermis, the Beer–Lambert model of the epidermis, the edge
losses, and the specular reflections are taken into account, is
shown in Fig. 3. The reflectance from epidermis to the air is
assumed to be independent on the wavelength and is accounted
for by increasing the specular reflection coefficient Rs. The scat-
tering from epidermis to dermis is neglected in the model.

The parameters of the model are the specular reflection Rs,

the absorption of the epidermis Ae, the absorption of the dermis
Ad, and the edge loss coefficient E. From Eqs. (8) and (9), it is
apparent that the absorption in Eq. (10) is directly determined
by the internal reflectance of because K, and the transport albedo
μ′

a. The transport albedo, in turn, is a sum of all absorption and
scattering properties of skin because μa = μ′

s/(μ′
s + μa). The

absorption coefficient is a function of absolute chromophore
concentrations, because μ′

a = ∑
i εi (λ)ci , where εi is the

a priori known molar extinction coefficient of chromophore
i. Therefore, the transport albedo can be calculated as follows:

μ′
a(λ, c) = μ′

s(λ)

μ′
s(λ) + ∑

i εi (λ)ci
, (14)

where c = [c1, c2, . . .]T is a vector containing the concentrations
of all chromophores included in the model.

Because μ′
a is a function of λ and c, so are T(λ, c), Rd(λ, c)

and Ad(λ, c) as well. The BLL model of epidermis is Ae(λ,cm)

S

Edge losses

IR

+

Dermis

I0

Epidermis

Epidermis

Ie = Id/eAe

Idr = Ie E

Isr = I0Rs

Ie = I0(1 −Rs)

Id = Ie/eAe

Id = Idiff /eAd

Fig. 3 Photon path model. The incident light beam, I0, is first di-
vided in two parts, the diffuse reflected part, Ie, and the specularly re-
flected part, Isr. The diffuse reflected beam, Ie, travels through epidermis
and is partly absorbed. The transmitted part, Id, enters into the dermis
and is partly reflected back. The reflected intensity, I ′

d, goes through
epidermis the second time. The diffuse and specular reflections are
collected by a detector, which potentially causes edge losses to the
diffuse reflected part of light, I ′

e. The absorption of epidermis, Ae, is
calculated by the Beer–Lambert law and the absorption of dermis, Ad,
is obtained from the diffusion theory.

= εm(λ)cm. The parameters for the edge-loss model, E(λ) are
EL and k. The total skin reflectance model can used in solving
the concentrations, by adapting it to the measured reflectance
spectrum, by minimizing the following square error over all
spectral channels, i:

ESS(c, Rs, EL, k)

=
∑
i

[
Rmeasured(λi )−Rpredicted(λi , c, Rs, EL , k)

]2
. (15)

The ESS can be minimized by finding optimal values for the
parameters with LMA algorithm, for example. When the skin
model is optimized, the derivative shown in Eq. (10) can be
obtained.

The absorption difference between two locations of skin can
now be written using Eqs. (6) and (11) as a Taylor series,

�A = ∂

∂μa
A

(
�μa,b + �μa,d

) + 2pe�μa,e. (16)

The specular reflection is canceled when measuring the dif-
ference of two absorption spectra; therefore, it may be ignored.
The possible edge loss needs to be compensated before applying
Eq. (16). To keep the system linear, the higher order terms of the
Taylor series cannot be used. The chromophore concentrations
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Fig. 4 MCML skin-simulation model structure. The depths of the layers
in millimeters are given along z-axis, in the left hand side. The layers
of the skin model are shown in the right hand side. The incident and
remitted light beams are shown in the top. The banana-shaped area
is a schematic of the typical path for the photons contributing to the
remittance shown by the arrow.

can be solved when the absorption coefficients, μ′
a, are replaced

by concentrations and extinction coefficients,

�A = ∂

∂μa
A (�cHBoεHBo + �cHBdεHBd + �cbaseεbase)

+2pe�cmεm.

(17)

Equation (17) contains four unknown concentrations. They
can be solved by measuring the absorption change, �A, in at
least at four different wavelengths, and finding an least-mean-
squares (LMS) solution for each absorption. The wavelengths
should be selected so that the equations are linearly independent.
This can be arranged by selecting the wavelength sufficiently far
away from each other. The absorption coefficients have unique
spectra because they depend on the spectra of the extinction
coefficients, ε.

2.4 Reference Data Using Monte Carlo Simulation
To validate the proposed chromophore mapping technique, it
was compared to the MCML simulation model. The MCML
model consists of the model structure and the parameters. The
structure is assumed to consists of homogeneous layers (shown
in Fig. 4). The model was originally developed by Tuchin
et al.,33 adopted by Reuss,15 and used, among others, by
us.20, 22, 34

The parameters of each layer are the thickness, d, the ab-
sorption coefficient, μa, the scattering coefficient, μs, and the
anisotropy, g. To be able to estimate the absorption coefficients,
the skin chromophores and their concentrations are needed. In
addition to hemoglobin and melanin, bilirubin and β-carotene
may also affect to the concentration prediction. Water is only sig-
nificant above 800 nm; it does not influence the skin color. The
skin model was tuned to match palm skin over a range of differ-
ent blood concentrations using the Allen’s test, as described in
Ref. 34. The nominal blood concentration is 150 g/l. The

hemoglobin molar concentration in blood can therefore be cal-
culated by dividing the concentration in grams/liter with the
molar mass of hemoglobin; therefore,

cHb,blood = 150 g/l

64500 g/mol
= 2.326 mol/l. (18)

The concentration of hemoglobin in skin is obtained by mul-
tiplying the hemoglobin concentration with the amount of blood
in skin, the blood fraction, fb. Therefore,

CHb,skin = fb CHb,blood. (19)

The typical value for fb was 0.05 according to Reuss in
Ref. 15. We have observed lower fb values in our earlier studies,
including, Ref. 34 where fb ∈ [0.0016, 0.0045].

Often the absorption coefficient of melanin is modeled as
follows:

μa,m = fm(1.70×1012)λ−3.48 (1/cm), (20)

where λ is the wavelength in nanometers. The melanin frac-
tion, fm, is estimated instead of estimating the concentration of
melanin molecules.35 This is because the size, structure, and the
absorption efficiency of the melanin molecules may vary. There-
fore, the absorption coefficient for given melanin concentration
is not well defined.

The scattering of the tissue was modeled as a combination of
Mie and Rayleigh scattering, as follows:36

μs(λ) = μs,Mie(λ) + μs,Rayleigh(λ)

= 2×105×λ−15 + 2×1012×λ−4.0. (21)

The skin without blood, the skin baseline, was simulated
using following formula:37

μa,d(λ) = 7.84×108×λ−3.255 (22)

The variations in bilirubin concentration can potentially dis-
turb the prediction of hemoglobin concentration or oxygen sat-
uration. Therefore, the bilirubin concentration was varied in
MCML simulation even though the prediction of the bilirubin
content was not tried. The nominal bilirubin concentration in
blood is CBr = 10 μM/1. The bilirubin concentration was kept
constant during “Blood” and “Melanin” data set simulation, and
random values between the range, shown in Table 1 were se-
lected in the simulation of the “Random” data set.

The above skin model is used to generate four data sets,
described in Table 1. The first two data sets are used for ob-
taining the numerical derivative of absorption by the melanin
or blood concentrations for reference. The melanin set, contains
32 simulated skin spectra where all variables, except melanin
concentration were kept constant. The melanin concentration
was linearly distributed within a given range. In the blood data
set, which also contains 32 simulated spectra, all variables ex-
cept blood volume fraction, fb, were kept constant. The blood
fraction, fb, was a linearly distributed within a given range. The
random data set contains 104 simulated spectra, where inde-
pendent random values were selected for melanin and blood
concentrations from the given ranges.
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Table 1 Simulated data sets and the range of the parameters during
the simulation.

Data-set Number of

name samples Range

Melanin 32 fm ∈ [0.01, 0.04]

fb = 0.005

Os = 0.8

CBr = 10 μM/1

Blood 32 fm = 0.02

fb ∈ [0.0, 0.010]

Os = 0.8

CBr = 10 μM/1

Random 104 fm ∈ [0.0, 0.05]

fb ∈ [0.0, 0.025]

Os ∈ [0.6, 1]

CBr ∈ [2.5, 25] μM/1

Each simulated spectra, in each data set, contains 78 wave-
lengths in the range λ ∈ [380, 1050] nm. The simulations were
made by tracking 106 photons for each simulated wavelength.
The plain MCML simulation estimates the reflectance of an
infinite thin pencil beam.

2.5 Allen’s Test Data
In addition to the simulated data, the proposed algorithm was
also validated using a measured data set. The measured data set
consists of the reflectance spectra of the human skin from the
palm of the hand from 20 persons, 5 locations each. From each
location, a series of 10 consequent samples were measured at the
rate of ∼1.8 samples per second. The measurements were car-
ried out using an HR4000 spectrometer (Ocean Optics, Dunedin,
Florida) and an ISP-REF integrating sphere (Ocean Optics). The
measurement of the reflectance of the palm was acquired so that
the test person placed his or her hand very lightly on the in-
tegrating sphere. The skin was illuminated with a diffuse light
field over the whole aperture of the sphere, in which radius
ra = 0.5 cm, using a light source, built in the sphere. The re-
flectance was collected in the middle of the aperture, from the
circular area, in which the radius is rb = 0.15 cm. The experiment
is further described in Ref. 34.

3 Results
3.1 Numerical Versus Analytical Derivatives
To validate the analytical derivatives shown in Eqs. (6) and (11),
they were compared to corresponding numerical derivatives ob-
tained from the MCML data sets, melanin and blood, shown in
Table 1. These data sets contain the absorption spectra when

a single-chromophore concentration, either melanin or blood,
is perturbed within a range, and all other parameters are kept
unchanged. A third-order polynomial was fitted to the simulated
A(c) curves, using statistical software package, R, and functional
data analysis toolbox.38 The derivatives of A(c) were now easily
obtained by differentiating the corresponding polynomials. To
study these polynomials and the first-order derivative over full
reflectance spectra, the absorptions were differentiated by the
concentrations instead of the absorption coefficients, and the
procedure was repeated over the spectral range of λ ∈ [380,
1050] nm. The derivative of the absorption, A, by the absorption
coefficient μ, and the derivative by the concentration are directly
related because

∂

∂μ
A(λ,μ) = 1

ε(λ)

∂

∂c
A(λ, c). (23)

The simulation results for Eq. (5) as a function of vary-
ing melanin concentrations are shown in Fig. 5(a). The poly-
nomial was fitted to the measured values of absorption as a
function of melanin concentration, A(cm), at each wavelength.
Figure 5(b) displays the coefficients of the A(cm) polynomial
over all wavelengths.

400 500 600 700 800 900 1000

0.
4

0.
6

0.
8

1.
0

1.
2

(a)
Wavelength / nm

A
bs

or
bt

io
n 

/ A
U

400 500 600 700 800 900 1000

0
5

10
15

20

(b)
Wavelength / nm

D
er

iv
at

iv
e 

of
 a

bs
or

bt
io

n

Fig. 5 Absorption of skin by varying melanin fraction, fm. (a) Absorp-
tion when the melanin fraction is increased from 1 to 4% in even steps
of 0.095%. (b) Zeroth- (O), first- (�), and second- ( + ) order coeffi-
cients (not in scale) of the fitted polynomial A(cm). The solid line shows
the absorption when cm = 0, and the dashed line shows the analytical
derivative ∂A/∂μa,m.
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Fig. 6 Absorption of skin with varying blood concentration. (a) Ab-
sorption when the skin blood fraction is increased from 0 to 1% in
even steps of 0.031%. (b) Zeroth- (O) and first-(�) order coefficients of
the fitted polynomial A(cm) (zeroth-order polyno mials is multiplied by
30), the coefficients of the absorption polynomial, A, by blood concen-
tration cb. The solid line shows the corresponding analytical derivative.

The zeroth-order coefficient of the polynomial and the skin
absorption without melanin are, as expected, very close to each
other. Correspondingly, the first-order coefficient and the an-
alytical derivative are similar when the wavelength, λ > 550
nm. The numerical estimate if noisy, making the root-mean-
square error-percentage (RMSEP) difference as large as 14%.
For wavelengths at <550 nm, the behavior deviates from the
Beer–Lambert law. The assumption of constant pathlength does
not hold any longer because the absorption of melanin becomes
very strong. The values of the second-order coefficient also seem
to deviate from zero at wavelengths shorter than 550 or even
600 nm. The simple model shown in Eq. (6) seems work better
at longer wavelengths.

3.2 Absorption Versus Blood Concentration
The simulation results for Eq. (5) and the comparison to Eq. (11)
are shown in Fig. 6. The constant term and the skin absorption
without blood are significantly different at short wavelengths.
This is because in addition to the linear term pd, the deriva-
tive also contains the nonlinear blood effect, μa,b p′

d, and the
cross-talk between skin baseline, μa,d p′

d. The numerical and an-

alytical first-order derivatives are again similar (<550 nm). The
explanation for larger differences in the range 450–500 nm is
the absorption of bilirubin. Bilirubin was assumed to be solved
in blood in MCML simulation but not in the diffusion model.
Therefore, the derivative of MCML data contains also the ab-
sorption of bilirubin, but the diffusion model does not. This
difference did not seem to significantly disturb the prediction of
blood and melanin concentrations.

3.3 Comparison to Monte Carlo Simulation
The accuracy of the prediction of the chromophore concen-
trations is assessed by means of the random MCML simula-
tion data set, shown in Table 1. The results are displayed in
Fig. 7. The accuracy of the prediction is measured as the RMSEP
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Fig. 7 Prediction of the chromophore concentrations of the MCML
simulation using dMBLL and following wavelengths: λ ∈ {505, 530,
595, 625, 850} nm. (a) Predicted blood fraction against blood fraction
used in the MCML simulation. The prediction error is RMSEP=15% and
the correlation between predicted and given values, r=0.94. (b) Pre-
dicted fraction of melanin against the melanin fraction used in MCML
simulation. The prediction error RMSEP=7% and correlation r=0.99.
(c) Predicted oxygen-saturation levels against saturation levels in the
MCML simulation. RMSEP=10%, r=0.73.
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Fig. 8 Predictions of the chromophore concentrations of the Allen’s
test data set. Solid lines are predictions made by fitting the diffusion
model to the full spectra. Dashed lines are obtained by fitting the dif-
fusion model to selected five wavelengths, λ ∈ {505, 530, 595, 625,
850} nm. The predictions shown in the dotted lines are obtained by
fitting the dMBLL model to the dif ference of the spectra. The reference
spectrum is the one measured at time T = 4.4 s. (a) Fraction of oxyhe-
moglobin (o) in upper curve and the fraction of deoxyhemoglobin (�)
in lower curve, (b) Predicted fraction of melanin ( + ) in skin, and (c)
Predicted oxygen saturation levels.

error and Pearson correlation coefficient between the predicted
and given values. The prediction of the melanin content is the
most accurate. Blood-prediction performance is slightly weaker
than prediction for melanin because the relationship between
the blood concentration and absorption is curved. The predic-
tion of oxygen saturation is the weakest. Often the concentration
of deoxyhemoglobin is very low, and even small absolute errors
cause large relative errors. Sometimes even slightly negative
values were observed. If negative concentration was observed,
then it was saturated to zero. The samples shown as triangles
are these kinds of fixed predictions.

Table 2 The Speeds of different implementations.

Number of Execution Time for

Method wavelengths time/spectrum 1 megapixel

MCML 285 25 min NA

MCML 5 26 s NA

Diffusion 285 1.1 s 12 days

Diffusion 5 0.53 s 6 days

dMBLL 5 1.2 ms 20 min

3.4 Allen’s Test Data
The algorithm was applied to the experimental Allen’s test data
to study its performance for measured data. The results are
shown in Fig. 8. The prediction of each chromophore was done
with three different methods. First by fitting the skin model
to the spectra by optimizing the chromophore concentrations
with LMA (solid line). Then the same method was repeated,
but now only five selected wavelengths were used (dashed
lines). The third method is to use the analytical derivative and
Eq. (17) to solve the linearized skin model around and operating
point. The spectrum measured at time T = 4.4 s was used as an
operating point.

3.5 Execution Speed
To evaluate the speed benefit gained by using a closed-form
dMBLL solution, the predictions done above were bench-
marked. The diffusion model and the dMBLL implementations
were programmed with a statistical software package, called R.
The MCML program was programmed with C. The predictions
were run in a normal desktop PC. The processor of the PC was
Intel R©Core 2 CPU 6600 using a 2.40-GHz clock frequency. We
also estimated how long it would take to process every pixel in
a 1-megapixel image. The results of the benchmarks are shown
in Table 2.

4 Discussion
The absolute blood concentration in dermis is perhaps not a clin-
ically significant parameter because it varies all the time. The
local and global blood circulation regulation change the blood
perfusion in skin due to body and ambient temperature changes,
due to physical exercise and the activity of metabolism, and
for many other reasons not directly related to skin. Therefore,
we have used the difference of the absorption between the nor-
mal skin and a skin disorder in measuring the severity of the
disorder. The method developed here, represented by Eq. (17)
can be used for finding the corresponding difference in chro-
mophore concentrations behind the change of absorption. How-
ever, the absolute concentrations in the reference area are also
needed because the derivative of absorption of dermis [shown in
Eq. (10)] depends on the absolute concentration.

The fitting of the diffusion model to the average spectra of
normal skin using LMA is a suitable method for determining
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the normal operating point, around which the skin absorption
can be linearized. The proposed method forms a simple rela-
tionship between the chromophore concentrations and the ab-
sorption. Many similar methods are based on heuristics of the
shape of the spectral curves. Our method is based on solv-
ing a simple matrix equation where the transformation matrix
is calculated from the analytical derivatives of the diffusion
model. The method can be easily adapted to any set of chro-
mophores and arbitrary wavelengths. The transformation ma-
trix is optimized case by case. The numerical derivative of the
MCML model could be used as well, but it is much slower
to compute. The proposed model is accurate near the operat-
ing point, but the error increases when the difference in chro-
mophore concentration becomes larger. The accuracy of the
measurement may be further increased by using several refer-
ence points, in case the difference of concentrations is abnor-
mally high.

The method can adapt to different wavelengths, but the accu-
racy is different in different wavelengths. The five wavelengths
used in this paper form one good subset of wavelengths, be-
cause the accuracy is sufficient and they can all be produced
using commonly available light-emitting diodes. Therefore, a
spectral imaging system for chromophore mapping can be eas-
ily constructed. The accuracy may be still improved by optimiz-
ing the wavelengths. The proposed model should not be used
for wavelengths of <550 nm because the model of epidermis
differs significantly from MCML simulation. More research is
needed to correct this problem in the future.

Here, the model also takes into account the specular reflec-
tions from the surface of the skin. In practice, the specular reflec-
tion can vary between skin locations, causing additional error.
These reflections can be removed from the image by placing a
polarizing filter in front of the light source and placing the sec-
ond filter orthogonally in front of the camera lens, as described
in Ref. 25 (Chap. 7). In this way, specular reflections and single
scattered photons are filtered away. The polarization of the mul-
tiple scattered photons is lost, and therefore, part of them will
pass through a second filter into the camera. When using these
cross-polarizing filters, special attention must be paid to cali-
bration, because the typical white references may reflect light
mainly retaining the polarization. Therefore, the camera may
measure even higher reflectance for red and NIR from skin than
from the white reference.

The execution speeds of the optimization methods are un-
suitably slow to the chromophore mapping purposes at the res-
olutions of contemporary cameras. The LMS algorithm is fast
enough, but then the system needs to be linearized. When the
system is linearized around a proper operating point, case by
case, the linearizion does not cause too much error.

The proposed method for compensating the edge losses of
the integrating sphere works for the optical properties used in
the MCML simulation. However, the method is not validated
for optical scattering and absorption coefficients, which differ
significantly from those of normal skin. The simulations cover
only one probe geometry, where light is illuminated through a
collimated beam, which radius rb = 0.15 cm, and the aperture
radius of the integrating sphere was ra = 0.5 cm. More studies
are needed to find out if it is enough to only optimize the model
parameters EL and k or change the whole model, when the probe
geometry changes.

5 Conclusion
In this research, a method is proposed to build a linear model,
based on the differential Beer–Lambert law to efficiently map
the chromophore concentrations in the spectral image of human
skin. The proposed algorithm calculates an optimal linear model
around an operating point, taking into account the spectra of the
selected wavelengths, the concentrations of these chromophores
in the selected operating point, and the available wavelengths.
The system is validated against a data set created with a MCML
simulation and a spectrometer measurement during the Allen’s
test, which modulates the blood fraction in skin.

The accuracy of the measurement is good enough for many
purposes. The RMSEP in predicting the blood and melanin frac-
tion was correspondingly 15 and 7%, and the Pearson correlation
coefficients were r = 0.94 and r = 0.99. The prediction of the
oxygen saturation is more error prone because the concentra-
tion of the deoxygenated hemoglobin is small. Therefore, the
prediction of the oxygen-saturation levels is more difficult and
the Pearson correlation between given and predicted values is r
= 0.73. The error percentage is still low: RMSEP = 10% be-
cause the oxygen saturation levels were only predicted in the
range of Os ∈ [0.6, 1.0], and therefore, the errors are small
compared to the actual value.

The proposed method is orders of magnitude faster than the
methods based on optimization during prediction. Therefore the
rendering of high-resolution spectral images is also possible.
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