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Abstract. Theoretical consideration of electromagnetic scattering by single-wall carbon nan-
otubes (SWNTs) and SWNT arrays requires knowledge of the linear surface conductivity of an
SWNT. An expression for the surface conductivity of an infinitely long SWNT was derived by
Slepyan et al. [Phys. Rev. B 60, 17136–17149 (1999)]. The twin purposes of this tutorial are to
succinctly discuss the derivation using the density matrix formalism and to provide ready-to-use
expressions. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3574402]
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1 Introduction

Peculiar electronic1 and optical properties2 of carbon nanotubes (CNTs) stimulate intensive
studies of their electromagnetic response. Recently, the problem of the electromagnetic field
diffraction by isolated CNTs,3–5 bundles, and composites6,7 containing CNTs received a lot
of attention due to the potentiality of CNT-based materials for the effective manipulation of
electromagnetic fields in the megahertz, gigahertz, and terahertz frequency ranges. The scat-
tering of the electric near-fields by CNTs8,9 has important applications in the near-field optical
microscopy and spectroscopy with the CNT-based probes. Theoretical consideration of these
problems requires knowledge of the linear surface conductivity of CNTs. Though the expres-
sions for the conductivity of a single-wall carbon nanotube (SWNT) were previously obtained
in Ref. 10 I feel the necessity to present the results of Ref. 10 for the general audience. The main
idea of the article is to explain the method of the SWNT surface conductivity calculation and to
provide the reader with the ready-to-use expressions for the conductivity. For this purpose I use
the density matrix formalism that was applied previously11–13 for studying the nonlinear optical
properties of SWNTs. The outline of the paper is as follows: equations of motions for the density
matrix are discussed in Sec. 2, and the expressions for the SWNT conductivity are presented in
Sec. 3. The consideration is restricted to the case of achiral zigzag (m, 0) SWNTs and armchair
(m,m) SWNTs.

2 Equations of Motion for the Density Matrix of the π -Electron
Subsystem in an SWNT

Let us consider an infinitely long achiral SWNT of a cross-sectional radius Rcn aligned parallel
to the z-axis of the Cartesian coordinate system. Suppose that the SWNT is exposed to the plane
monochromatic electromagnetic wave propagating normally to the SWNT axis and the electric
field of the wave is polarized along the SWNT axis. As the typical SWNT radius (of order of
1 nm) is small compared to the electromagnetic field wavelength up to the x ray frequency
region we can neglect the space inhomogeneity of the electric field on the SWNT surface and
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present it as follows:

E(t) = ezE(t) = ez(E0e
−iωt + c.c.), (1)

where ez is the unit vector along the z-axis, and E0 and ω are the field amplitude and angular
frequency, respectively.

The state of the π -electron subsystem in the SWNT can be characterized by the single-
electron density matrix ραβ (t, pz, s), where α, β = c, v, indices c, v correspond to the conduction
and valence bands, respectively, and pz is the projection of the electron quasimomentum on
the SWNT axis. Due to the quantization of the electron quasimomentum component normal to
the SWNT axis1 both the valence and the conduction bands of zigzag (m, 0) and armchair (m,m)
SWNTs are split on m sub-bands enumerated by an integer index s = 1, . . . , m. The equations
of motion for the π -electron density matrix of the SWNT exposed to the electromagnetic field
Eq. (1) has the following form11,12

∂ρ(t, pz, s)

∂t
+ e E(t)

∂ρ(t, pz, s)

∂pz

= −ρ(t, pz, s) − ρeq(pz, s)

τ1

+2i e

h̄
E(t)Rcv(pz, s)[ρ∗

cv(t, pz, s) − ρcv(t, pz, s)] , (2)

∂ρcv(t, pz, s)

∂t
+ e E(t)

∂ρcv(t, pz, s)

∂pz

= −iωcv(pz, s)ρcv(t, pz, s) − ρcv(t, pz, s)

τ2

− i e

h̄
E(t)Rcv(pz, s)ρ(t, pz, s) , (3)

where ρ = ρcc − ρvv is the dynamical inversion, ρeq(pz, s) is the equilibrium inversion, τ1,2 are
the longitudinal and transversal electron relaxation times, Rcv is the normalized matrix element
of the electron dipole momentum operator, ωcv is the frequency of the electron interband
transitions, e is the electron charge, h̄ is the reduced Planck constant, and ∗ stands for complex
conjugate.

Equations (2) and (3) take into account both intraband and direct interband transitions of
π electrons. Contribution of π electrons indirect interband transitions to the electromagnetic
response of an achiral SWNT can be neglected. As no assumption was made about the smallness
of the electric field amplitude E0 while deriving Eqs. (2) and (3), these equations can describe
interaction between the SWNT and the electromagnetic field both in linear10 and non-linear
regimes.11–13 As the single-electron approximation was used to obtain Eqs. (2) and (3), these
equations can not account for the influence of the excitons on the electromagnetic properties of
the SWNTs, though this influence can be essential in the optical frequency range.14

We are interested in the linear electromagnetic response of the SWNT. Using the perturbation
theory we seek for the solution of Eqs. (2) and (3) in the form:

ρ(t, pz, s) = ρeq(pz, s) + λρ(1)(t, pz, s), ρcv(t, pz, s) = λρ(1)
cv (t, pz, s), (4)

where λ is an arbitrary small parameter, determining the strength of the perturbation. Substituting
Eq. (4) in Eqs. (2) and (3), replacing E(t) by λE(t) and collecting terms with the first power of
λ we obtain the system of uncoupled equations

∂ρ(1)(t, pz, s)

∂t
+ ρ(1)(t, pz, s)

τ1
= −e E(t)

∂ρeq(pz, s)

∂pz

, (5)

∂ρ
(1)
cv (t, pz, s)

∂t
+

[
iωcv(pz, s) + 1

τ2

]
ρ(1)

cv (t, pz, s) = − ie

h̄
E(t)Rcv(pz, s)ρeq (pz, s) , (6)
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that can be easily solved by substitution

ρ(1)(t, pz, s) = ρ̃(1)(ω,pz, s)E0e
−iωt + c.c., (7)

ρ(1)
cv (t, pz, s) = ρ̃

(−)
cv (ω,pz, s)E0e

−iωt + ρ̃
(+)
cv (ω,pz, s)E0e

iωt . (8)

Taking into account the explicit form of incident field Eq. (1) and collecting terms with e−iωt

we obtain:

ρ̃(1)(ω,pz, s) = − ie

ω + i/τ1

∂ρeq(pz, s)

∂pz

, (9)

ρ̃(∓)
cv (ω,pz, s) = − eRcv(pz, s)ρeq (pz, s)

h̄[ωcv(pz, s) ∓ ω − i/τ2]
. (10)

3 SWNT Conductivity

Current density induced in an achiral SWNT by the electromagnetic field has the following
form:11,12

j (t) = 2e

(2πh̄)2

h̄

Rcn

m∑
s=1

a∫
−a

{
∂Ec(pz, s)

∂pz

ρ(1)(t, pz, s)

+ i ωcv(pz, s)Rcv(pz, s)
[
ρ(1)∗

cv (t, pz, s) − ρ(1)
cv (t, pz, s)

]}
dpz, (11)

where Ec is the dispersion law of π electrons in the SWNT, and a defines the first Brillouin
zone. Substituting expressions (7) and (8) into Eq. (11) we obtain

j (t) = σ (ω)E0e
−iωt + c.c., (12)

where, by definition,

σ (ω) = σ1(ω) + σ2(ω) (13)

is the linear conductivity of the SWNT,

σ1 = − ie2

2π2Rcnh̄(ω + i/τ1)

m∑
s=1

a∫
−a

∂Ec(pz, s)

∂pz

∂ρeq (pz, s)

∂pz

dpz, (14)

σ2 = ie2

π2Rcnh̄
2

m∑
s=1

a∫
−a

ωcv(pz, s)R2
cv(pz, s)ρeq (pz, s)(ω + i/τ2)

ω2
cv(pz, s) − (ω + i/τ2)2

dpz. (15)

Initially, Eqs. (13)–(15) were obtained in Ref. 10. Equations (14) and (15) account for the
contribution of the intraband motions and interband transitions of the electrons to the total
conductivity, respectively.

Define the functions that are present in Eqs. (14) and (15). The frequency of the electron
interband transitions ωcv and equilibrium inversion ρeq are related to the dispersion law of π
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electrons in the following way:

ωcv(pz, s) = Ec(pz, s) − Ev(pz, s)

h̄
, (16)

ρeq(pz, s) = F [Ec(pz, s)] − F [Ev(pz, s)] , (17)

where

F (E) =
[

1 + exp

( E
kBT

)]−1

(18)

is the Fermi distribution, kB is the Boltzmann constant, and T is the temperature. In order to
proceed further, the SWNT type needs to be indicated. Using the tight-binding approximation
it is easy to demonstrate1,10–12 that for zigzag (m, 0) SWNT

Ec,v(pz, s) = ±γ0

[
1 + 4 cos

(
3bpz

2h̄

)
cos

(πs

m

)
+ 4 cos2

(πs

m

)]1/2

, (19)

Rcv(pz, s) = − bγ 2
0

2E2
c (pz, s)

[
1 + cos

(
3bpz

2h̄

)
cos

(πs

m

)
− 2 cos2

(πs

m

)]
, (20)

Rcn =
√

3bm

2π
, a = 2πh̄

3b
, (21)

while for armchair (m,m) SWNT

Ec,v(pz, s) = ±γ0

[
1 + 4 cos

(√
3bpz

2h̄

)
cos

(πs

m

)
+4 cos2

(√
3bpz

2h̄

)]1/2

, (22)

Rcv(pz, s) = −
√

3bγ 2
0

2E2
c (pz, s)

sin

(√
3bpz

2h̄

)
sin

(πs

m

)
, (23)

Rcn = 3bm

2π
, a = 2πh̄√

3b
, (24)

where γ0 ≈ 2.7 eV (Ref. 1) is the transfer integral, b = 0.142 nm is the interatomic distance in
the SWNT.

Finally, let us obtain a simplified expression for the low-frequency conductivity of metallic
SWNTs. Before doing so, recall that zigzag (m, 0) SWNTs are metals when index m is a
multiple of 3, while armchair (m,m) SWNTs are always metals. When the frequency of the
external electromagnetic field is below the frequency of the interband electron transitions, the
intraband motions of the electrons give a dominant contribution to the conductivity of metallic
SWNTs. This means that the low-frequency conductivity of a metallic SWNT is defined by
Eq. (14) with great accuracy. Equation (14) can be further simplified for SWNTs of not very
big radii (m < 50) as the main contribution to the integral is due to sub-bands s crossing the
Fermi level. The Fermi surface in SWNTs is defined by the set of points satisfying the condition
Ec,v(pF , s) = 0. In the vicinity of the Fermi level the dispersion law of electrons in metallic
SWNTs has the following approximated form:1
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Ec,v(pz, s) ≈ ±vF |pz − pF |, (25)

where vF = 3bγ0/2h̄ is the Fermi velocity. The contribution of the vicinity of each Fermi point
pF to the integral in Eq. (14) is equal to

pF +�pF∫
pF −�pF

∂Ec

∂pz

∂ρeq

∂pz

dpz = 2

pF +�pF∫
pF

(
∂Ec

∂pz

)2
∂ρeq

∂Ec

dpz

≈ 2vF

Ec(pF +�pF ,s)∫
0

∂ρeq

∂Ec

dEc

= 2vF {ρeq[Ec(pF + �pF , s)] − ρeq(0)}
= −2vF , (26)

where we take into the account that ρeq(0) = 0 and ρeq(Ec) → −1 for Ec � kBT . The last condi-
tion can be reformulated as �pF /a � kBT /πγ0 for zigzag SWNTs and �pF /a � kBT /

√
3πγ0

for armchair ones. As at the room temperature kBT ≈ 0.025 eV and γ0 ≈ 2.7 eV these conditions
are fulfilled for the nearest proximity of the Fermi point.

In zigzag SWNT sub-bands s = m/3 and s = 2m/3 crosses the Fermi level ones. In armchair
SWNTs the sub-band s = m crosses the Fermi level twice. This means that the integral in
Eq. (14) is approximately equal to −4vF both for metallic zigzag and armchair SWNTs. Thus,
the following approximated expression for the conductivity of metallic SWNTs can be obtained:

σ = i
3bγ0e

2

π2Rcn h̄2(ω + iτ1)
, (27)

Fig. 1 Linear surface conductivity of (a) and (c) metallic (15,0) SWNT and (b) and (d) semi-
conducting (14,0) SWNT calculated using exact Eq. (13) and approximated Eqs. (14) and (27).
τ1 = τ2 = 33 fs in accordance with Ref. 6.
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where the SWNT radius is defined by Eq. (21) for zigzag SWNTs and Eq. (24) for armchair
ones.

Conductivity spectra of semiconducting (14,0) SWNT and metallic (15,0) SWNT are pre-
sented in Fig. 1. As one can see, in the low-frequency region the values of the conductivity of
(15,0) SWNT calculated using approximated Eq. (27) are in good agreement with the conduc-
tivity values obtained by Eq. (13). However, in the high-frequency region contribution of the
interband electron transitions becomes dominant and approximation (27) is no more applicable.
In contrast to metallic SWNTs, the conductivity band of semiconducting SWNTs is practically
unoccupied at room temperature. This means that the contribution of the intraband electron mo-
tions to the conductivity of semiconducting SWNTs is always small and thus the contribution
of the interband electron transitions given by Eq. (15) always needs to be accounted for. Note
that surface conductivity unit 
−1 differs from the volume conductivity unit 
−1cm−1.

4 Concluding Remarks

In this tutorial the method of the SWNT surface conductivity calculation is discussed. Equations
of motions for the density matrix of the π -electron subsystem in the SWNT illuminated by
the plane monochromatic electromagnetic wave were solved analytically by the perturbation
method and the expressions for the linear conductivity of achiral SWNTs were obtained. All
the parameters and functions necessary to calculate the SWNT conductivity without referring
to any other sources are indicated. Both SI and Gaussian units can be used.
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