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Abstract. In studies with near-infrared spectroscopy, the recorded signals contain information on the temporal
interbeat intervals of the heart. If this cardiac information is needed exclusively and could directly be extracted,
an additional electrocardiography device would be unnecessary. The aim was to estimate these intervals from
signals measured with near-infrared spectroscopy with two novel approaches. In one approach, we model the
heartbeat oscillations in these signals with a Fourier series where the coefficients and the fundamental frequency
can continuously change over time. The time-dependent model parameters are estimated and used to calculate
the interbeat intervals. The second approach uses empirical mode decomposition. The signal measured with near-
infrared spectroscopy is empirically decomposed into a set of oscillatory components. The sum of a specific subset
of them is an estimate of the pure heartbeat signal in which the diastolic peaks and consequential interbeat intervals
are detected. We show in simultaneous electrocardiography and near-infrared spectroscopy measurements on 11
subjects (8 men and 3 woman with mean age 32.8 ± 8.1 yr), that the interbeat intervals (and the consequential
pulse rate variability measures), estimated using the proposed approaches, are in high agreement with their
correspondents from electrocardiography. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3606560]
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1 Introduction
Near-infrared spectroscopy (NIRS) potentially measures
changes in oxy- and deoxyhemoglobin1 caused by Mayer waves,
breathing, cardiac activity, and brain activity. Figure 1(a) shows
a NIRS signal featuring a heartbeat with a period of ≈1 s and
a Mayer wave with a period of ≈10 s. The challenge is to ex-
tract the pure heartbeat and to estimate the heart rate variability
(HRV) from NIRS signals.

HRV is (i) quantified by a set of statistical measures which
result from time domain or frequency domain analysis of the
time intervals between adjacent single heartbeats, called normal
to normal (NN) intervals, in an electrocardiography (ECG)
measurement, (ii) a quantitative and diagnostic marker of the
autonomic nervous system’s control on the heart rate, (iii) used
in research and clinical studies,2 e.g., a relationship between
the autonomic nervous system’s activity and cardiovascular
mortality3–5 has been shown.

The pulse rate variability (PRV) refers to the same set of sta-
tistical measures like HRV, but is extracted from photoplethys-
mography (PPG) signals. Since the operating principles of NIRS
and PPG are similar, we use the term PRV when the measures
are derived from NIRS signals; the term HRV is associated with
ECG signals.

In NIRS signals, the heartbeat component is often present
irrespective of the sensor’s position. Thus, e.g., during functional

Address all correspondence to: Ivo Trajkovic, University Hospital Zurich, Division
of Neonatology Frauenklinikstrasse 10, Zurich 8091, Switzerland. Tel: +41 77
406 09 18; E-mail: ivot@ee.ethz.ch.

studies, information on the NN intervals, and consequently on
PRV, is already recorded. If this cardiac information is needed
exclusively and would directly be extracted from NIRS, an ECG
device would not be necessary.

In this paper, we focus on describing two approaches of
how to estimate NN intervals from NIRS signals and showing
proof of concept, which is a basis for future clinical studies.
The approaches are validated by comparing their estimates with
the corresponding ones from ECG and the resulting PRV and
HRV measures, i.e., the standard deviation of the NN intervals
(SDNN)

S =
√√√√ 1

L

L∑
l=1

(χl − χ )2, (1)

with χ = 1
L

∑L
l=1 χl and the square root of the mean squared

differences of successive NN intervals (RMSSD)

R =
√√√√ 1

L − 1

L−1∑
l=1

(χl+1 − χl )2, (2)

obtained from a set of L NN intervals χ1, . . . , χL . We omit fre-
quency domain parameters, since they would not give additional
insights concerning the agreement of NN intervals, SDNN, and
RMSSD between NIRS and ECG.

One approach uses empirical mode decomposition (EMD);
the other uses parameter estimation of a model for almost
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Fig. 1 (a) shows a raw NIRS signal. (b) shows the heartbeat compo-
nent resulting from applying Â1,−, . . . , ÂK ,− and �̂ = (�̂1, . . . , �̂1000)
in Eq. (4). (c) shows �̂. (d) depicts �̂′

1, . . . , �̂′
999 with �̂′

n = �̂n+1 − �̂n.
Since with increasing n, the values �̂n increase monotonically with re-
spect to the modulo 2π function [dictated by, Eq. (6)], �̂′

n must be
positive for all n except for the transition indices, where the modulo
operator takes effect [peaks in (d)]. Finally, the samples between adja-
cent peaks are counted (e).

periodic signals (PEMAPS); both algorithms were designed to
analyze nonstationary signals which do not necessarily contain
strictly periodic components.

2 Measurement
We tested the agreement between the NN intervals (and the re-
sulting HRV measures) derived from ECG and the correspond-
ing NN intervals (and the resulting PRV measures) estimated
from NIRS. In 11 adult volunteers (8 men and 3 woman with
mean age 32.8 ± 8.1 yr), ECG and NIRS were coregistered. Dur-
ing the experiment, each subject stood calmly, then sat calmly,
and finally moved both arms and hands slowly while sitting;
each of these three conditions took 5 min.

3 Instrumentation
The ECG device was a MK3-ETA made by TOM Medical En-
twicklungs GmbH; the NIRS device was a continuous wave
MCPII.6

According to the user manual of the ECG device: electrode 1
was placed on the upper onset of the breastbone (sternal), elec-
trode 2 was placed on the right lateral costal arch, and electrode
3 was placed submammary on the left.

The raw ECG signal is the sampled voltage difference be-
tween electrodes 1 and 3. Recommended ECG sampling rates

1

1 3

32 4

42

#3/#3

cable
MCPII
device 2.5 cm

#1/#4

1.25 cm1.25 cm 1.25 cm

sensor

Fig. 2 The NIRS sensor provides 4 light sources (circles) and 4 detec-
tors (squares) and thus 16 light paths of which some are depicted as
curved arrows.

are 250 to 500 Hz;2 we chose fECG = 128 Hz to make ECG and
NIRS signals, the latter sampled at a not alterable rate of 100
Hz, comparable.

NN intervals were extracted by detecting the peaks of the
R waves in a detrended, but not further filtered, ECG signal.
Detrending made peak detection more robust; we considered
further denoising unnecessary, since the R waves in ECG signals
are strong compared to the noise.

Electrode 2 was used for potential equalization.
The NIRS sensor is depicted in Fig. 2. Each source

(light-emitting diode) sends light of constant intensity with
wavelengths 750, 800, and 875 nm; each detector (photodiode)
measures light intensity. The NIRS signal’s sample values are
proportional to the number of photons per time unit flowing
through the photodiode, as well as the integral over the spectral
sensitivity of the photodiode. MCPII was configured to drive 12
source/detector combinations, called “light paths,” each with
3 wavelengths, resulting in 36 data channels. The sampling
rate was fNIRS = 100 Hz per data channel meaning that every
10 ms, 36 samples (1 sample per data channel) were acquired
according to a time-multiplexed pattern.

NN intervals were estimated from one data channel which
features a heartbeat component; the remaining 35 channels were
ignored. The used light paths and wavelengths are stated in
Table 1. The source/detector distances can be extracted from
Fig. 2.

The NIRS sensor was placed on the right (from the subject’s
point of view) forehead, where usually in several data channels
a clear heartbeat component is present.

4 Approach Based on PEMAPS
A periodic signal can be represented by a Fourier series. Specif-
ically, one of the equidistant samples x1, x2, . . . of a real-valued
periodic signal can be written as

xn = Re

( ∞∑
k=0

Ake jkn�

)
(3)

with real coefficient A0, complex coefficients A1, A2, . . ., and
fundamental frequency � ∈ R.

We model the heartbeat component in NIRS signals as a
trendless, almost periodic signal,7 i.e., A1, A2, . . . and � in
Eq. (3) become time-dependent, and A0 is discarded. Under this
assumption, Eq. (3) changes to

xn = Re

(
K∑

k=1

Ak,n · e j�n k

)
(4)

with a single sample xn of the real-valued heartbeat component at
discrete time n, time-dependent coefficients A1,n, . . . AK ,n ∈ C,
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Table 1 Cross correlation coefficients of NN intervals as defined in
Eq. (14).

Subject
r

ECG/PEMAPS
r

ECG/EMD SNR

Wave
length
[nm]

Light-
path

1 0.992376 0.981996 60.5 750 #1/#1

2 0.996571 0.996401 76.4 750 #1/#1

3 0.997600 0.995015 104.4 750 #1/#1

4 0.998201 0.997232 100.8 750 #1/#1

5 0.991168 0.981781 56.2 875 #4/#1

6 0.996770 0.988709 126.9 800 #4/#1

7 0.993744 0.984243 101.3 800 #4/#1

8 0.988616 0.969616 205.6 750 #1/#1

9 0.997752 0.996418 131.7 750 #1/#1

10 0.993719 0.990270 83.2 750 #1/#1

11 0.995355 0.987103 51.4 750 #1/#4

median 0.995355 0.988709 100.8 – –

time-dependent phase �n ∈ [0, 2π ], finite number of frequen-
cies K , and

Ak,n+1 ≈ Ak,n, (5)

�n+1 = (�n + �n) mod 2π, (6)

�n+1 ≈ �n . (7)

Equation (7) expresses the varying heart rate; Eq. (5) expresses
the varying beat shape.

Let the NIRS signal be a noisy, trended version of the heart-
beat component, i.e.,

yn = A0,n + xn + Zn (8)

which means a single NIRS sample yn is a sum of the white
Gaussian noise (sample Zn), the heartbeat (sample xn), and a
slow trend (sample A0,n). The latter models components slower
than the heartbeat, i.e., Mayer waves, breathing, and brain ac-
tivity.

Given a vector of N measured NIRS samples y
�= (y1, . . . , yN ), the objective is to estimate the model parameter
vector �

�= (�1, . . . , �N ) and coefficient matrix

A =

⎛
⎜⎝

A0,1 . . . A0,N
...

. . .
...

AK ,1 . . . AK ,N

⎞
⎟⎠ ,

such that
∑N

n=1(yn − xn − A0,n)2 is minimal and reconstruct

x
�= (x1, . . . , xN ) by applying the estimates in Eq. (4). We will

use Ak,− for the k’th row (harmonic index) of A.
Based on the measured NIRS samples y and a given estimate

Â (we mark estimates of parameters with a hat, e.g., Â is an

estimate of A), � is estimated as

�̂ = arg max
�∈[0,2π ]N

f (� | y, Â) (9)

where the conditional probability density function f in Eq. (9)
comprises the assumption in Eq. (8), the model (4), the re-
lation (6), and the constraint (7). The latter is handled with
adjustable strength by using prior knowledge of the upper and
lower limits of �n . A heart rate has minimum Hmin and maxi-
mum Hmax values. Considering that y is sampled at fNIRS [Hz]
and that during one single heartbeat the phases �1,�2, . . . in
Eq. (4) traverse the interval [0, 2π], each heart rate H can be
assigned to an angle growth � according to

�(H ) = H · 2π

fNIRS · 60
.

The limits of �n are �min = �(Hmin) and �max = �(Hmax).
Ak,n are estimated based on the measured NIRS samples y,

estimates Âk−1,−, . . . , Â0,−, and �̂ from the previous iteration
as

Âk,n = arg max
Ak,n∈C

g(Ak,n | y, Âk−1,−, . . . , Â0,−, �̂) (10)

for increasing k. The function g in Eq. (10) comprises the as-
sumption in Eqs. (8) and (4), and the constraint (5). The latter
is handled with adjustable strength by message damping as de-
scribed in Ref. 7, Sec. 3.4 (“

γ=”-node).
The probability density functions f in Eq. (9) and g in

Eq. (10) are derived by using factor graphs and message passing
algorithms described in Secs. 3.3 and 3.4 in Ref. 7.

The whole estimation algorithm is split into several building
blocks whose interaction is depicted in Fig. 3.

Initially, the “A0 estimator” independently estimates the slow
component A0,− by means of Eq. (10). Since for this �̂ is not
needed, it is a one-time procedure based on y only.

In the heartbeat component, most of the signal energy, apart
from the noise, lies in the fundamental frequency coefficient
A1,−; thus, a first rough estimate of the heartbeat component
is a sinusoid. Its magnitude Ã1 is calculated by the “initial A1

estimator” block such that the sinusoid is of approximately the
same energy as y − Â0,−.

Based on Â0,− and Ã1, the “phase estimator” calculates �̂

which is used by the “coefficient estimator” to calculate the full
set of coefficient estimates Â. For the specific algorithms of the
phase estimator and the coefficient estimator refer to Ref. 7,
Secs. 3.3 and 3.4.

At this point, it is possible to enter entries of �̂ and Â
directly in Eq. (4) (done in the “reconstruction of x̂”-block) and

of
Reconstruction

Initial
estimatorestimator

Phase estimator

Coefficient estimator

x̂

A1A0

Â Θ̂

Â0,− Ã1

Fig. 3 The building blocks of the PEMAPS algorithm.
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obtain a first estimate x̂ of the heartbeat component. The result
can be improved by iterating in the coefficient estimator–phase
estimator loop (Fig. 3) before calculating x̂.

Figure 1 illustrates how NN intervals are estimated from
NIRS signals using PEMAPS. To convert the intervals Q in plot
(e) of Fig. 1 to units of time, i.e., [s],

tQ = Q

fs
(11)

with sampling rate fs [Hz] can be used.

5 Approach Based on EMD
EMD decomposes a signal into a finite number of oscillatory
modes, called intrinsic mode functions (IMFs), by their charac-
teristic time scales. The IMFs are derived empirically from the
measured signal without any prior knowledge or model.

In Ref. 8, Sec. 5 an IMF is formally defined, and the decom-
position procedure, called “the sifting process,” is described in
detail. The latter can be summarized as follows:

(1) Set i = 1.

(2) Set u
�= y, with measured samples y = y1, y2, . . ..

(3) Set the initial residual r1
�= y (relevant in step 8).

(4) Find the local extrema of u.

(5) Fit a cubic spline through all maxima which is an upper
envelope eu of u, analogously through all minima, which
is a lower envelope el of u.

(6) The mean of the two envelopes mi = (el + eu)/2 is sub-
tracted from u: hi = u − mi .

(7) Treat hi as the new input signal u and go to step 4.
Steps 4 – 7 are repeated until hi becomes a curve with as
many zero crossings as extrema and the upper and lower
envelopes of hi become symmetric with regard to the
zero line. Then hi is the i’th IMF denoted as ci .

(8) Let u
�= r i+1 = r i − ci .

(9) Increase i and go to step 4.

The sifting process stops when r i+1 in step 8 is a constant, a
monotonic slope, or a function with only one extremum. The
original signal is given as

y =
N∑

i=1

ci + r N+1.

The IMFs with lower indices i represent fast and those with
higher indices slow oscillations.

By examining the IMFs by eye, one can recognize (based
on their mean period length) which of them are related to the
heartbeat component. The sum of this subset of IMFs represents
an estimate x̂ of the heartbeat component, of which an example
is illustrated in Fig. 4.

In NIRS, near-infrared light penetrates tissue. The more
blood the tissue contains, the more light is absorbed, i.e., the
less light reaches the detector. Consequently, the light intensity
at the detector is highest during diastole. We use the diastolic
maxima (circles in Fig. 4) to estimate the NN intervals.

x̂n is assumed to be the m’th diastolic maximum Pm with
entry index I (Pm) = n in x̂, if it is the m’th entry of x̂ for which

x̂
[A

D
C

un
it
s]

time [s]
0 1 2 3 4               5

-50

0

50

Fig. 4 An estimate of the heartbeat component computed using EMD.
All diastolic maxima are marked with circles, some of the nondiastolic
maxima are marked with squares.

the conditions

x̂n − x̂n−1 > 0,

x̂n − x̂n+1 > 0,

x̂n > ξ1, (12)

I (Pm) − I (Pm−1) > ξ2 (13)

hold. With appropriate ξ1 (e.g., ξ1
�= 45 in Fig. 4), the condi-

tion (12) discards the nondiastolic maxima (marked by squares
in Fig. 4). Sometimes a diastolic maximum is lower than a nondi-
astolic one; then there is no ξ1, such that the diastolic maximum
is detected and the nondiastolic one is omitted. Choosing ξ1 low
enough such that all diastolic (and as well some nondiastolic)
maxima are detected, using Eq. (13) to find neighboring max-
ima which are too close to each other, and discarding the smaller
maximum solves the problem.

The NN intervals can now be estimated by counting the sam-
ples between the detected adjacent diastolic maxima. Finally,
Eq. (11) can be used to convert the intervals to units of time.

6 Validation: Data Analysis
All recorded NIRS and ECG signals were evaluated offline. Seg-
ments with movement artifacts (sudden, typically between 0.5
and 2 s long changes, during which the standard deviation of
the signal increases more than 100%) were excluded from the
evaluation. In all our signals, such changes are distinct, and we
recognized them easily by eye. Alternatively, the algorithm in
Ref. 9 can be used to detect excessive values in the standard
deviation of a NIRS or ECG signal, which are larger than an
intuitively chosen threshold (see Ref. 9, Sec. 2.2.2). The cor-
responding NIRS and ECG samples are then assumed to be
distorted by movement artifacts. Since in our case the latter are
distinct without edge cases, this algorithm would exclude the
same segments as we recognized by eye.

One subject was excluded from the evaluation due to techni-
cal problems.

From NIRS, NN intervals were estimated from a data channel
with a clear heartbeat component; the remaining data channels
were ignored.

From a detrended ECG signal, NN intervals were estimated
by detecting the peaks of the R waves with the same procedure as
detecting diastolic peaks in the heartbeat component estimated
from NIRS signals using EMD (procedure described at the end
of Sec. 5). For every subject/ECG signal, ξ1 in Eq. (12) was cho-
sen individually. For all subjects/ECG signals, ξ2 = 61 samples
in Eq. (13).
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Table 2 Change of SDNN (in percent) related to condition changing; cross-correlation coefficients r and
p-values (t-test) give a comparison of all 11 SDNN values between ECG and NIRS.

From standing to sitting From resting to exercise

Subject ECG PEMAPS EMD ECG PEMAPS EMD

1 − 5.16 − 3.10 − 0.09 17.83 15.09 12.79

2 9.97 8.87 8.38 − 29.71 − 28.63 − 28.44

3 − 25.00 − 23.10 − 22.14 − 0.24 − 0.12 − 0.90

4 40.73 40.67 39.98 − 47.16 − 47.40 − 47.11

5 − 10.02 − 9.67 − 9.31 15.24 13.71 12.73

6 33.59 31.70 31.10 − 38.96 − 39.32 − 39.27

7 − 22.25 − 21.49 − 21.53 − 14.16 − 13.95 − 13.27

8 − 10.68 − 10.32 − 9.66 15.50 15.53 11.53

9 − 18.29 − 17.71 − 17.47 1.07 1.70 0.89

10 − 28.38 − 28.15 − 26.85 30.07 30.39 29.00

11 22.49 21.30 23.02 − 20.28 − 18.11 − 19.03

r 0.9993 0.9975 0.9989 0.9979

p 4.61×10−14 1.22×10−11 3.46×10−13 5.1×10−12

For all subjects/NIRS signals, PEMAPS was set up with K
= 3 in Eq. (4), two iterations in the phase estimator/coefficient
estimator loop (Fig. 3), message damping factors for harmonic
indices k = 0: γ = 0.936, k = 1: γ = 0.98, k = 2: γ = 0.985
and k = 3: γ = 0.989 (see Ref. 7, Sec. 3.4, “

γ=”-node) and
�min = 0.026 rad and �max = 0.131 rad (see Sec. 4). Â0,− was
smoothed by feeding it back to the A0 estimator (Fig. 3) as the
new input signal and re-estimating A0,−. For every subject, this
procedure was performed twice successively.

For the EMD-based approach, ξ1 was chosen for every sub-
ject/NIRS signals individually; ξ2 = 48 samples, for all sub-
jects/NIRS signals.

7 Validation: Results
Assuming that, for the j’th subject we evaluated a set of
W j NN intervals χ

( j)
ECG

�= (χ ( j)
E,1, . . . , χ

( j)
E,W j

) derived from ECG

and χ
( j)
NIRS

�= (χ ( j)
N ,1, . . . , χ

( j)
N ,W j

) estimated from NIRS using
PEMAPS and EMD, Table 1 shows, for each subject, i.e., for
j = 1, . . . , 11, the cross-correlation coefficient

r
�= 1

W j − 1

W j∑
w=1

(χ ( j)
E,w − χ

( j)
ECG) · (χ ( j)

N,w − χ
( j)
NIRS)

σ̂
( j)
χE · σ̂

( j)
χN

(14)

with empirical means χ
( j)
ECG = 1/W j

∑W j

w=1 χ
( j)
E,w and

χ
( j)
NIRS = 1/W j

∑W j

w=1 χ
( j)
N,w , and empirical standard de-

viations σ̂
( j)
χE =

√
1/(W j − 1)

∑W j

w=1(χ ( j)
E,w − χ

( j)
ECG)2 and

σ̂
( j)
χN =

√
1/(W j − 1)

∑W j

w=1(χ ( j)
N,w − χ

( j)
NIRS)2. In addition, for

each subject, the used wavelength, light path, and an estimate
of the signal-to-noise ratio (SNR)

SNR =
∑N

n=1 x̂2
n∑N

n=1(yn − x̂n − Â0,n)2
(15)

with reconstructed heartbeat sample x̂n in Eq. (4), NIRS sample
yn , and estimated sample Â0,n of the slow trend in Eq. (8) are
given in Table 1.

Table 2 shows, per subject, how SDNN changes, from stand-
ing to sitting and, during sitting from resting to moving hands.
Table 3 shows the same for RMSSD. In both tables, the physi-
ological adaptation phases, i.e., the first 40 s during sitting and
the first 10 s during the exercise, were excluded from the analy-
sis, and SDNN/RMSSD values of all 11 subjects are compared
between ECG and NIRS using cross-correlation coefficients r
and p-values (t-test); the usability of the t-test has been approved
by a Lilliefors test.

Let χECG be a vector of NN intervals derived from ECG of all
11 subjects; let χPEMAPS and χEMD be the same, but estimated
from NIRS using PEMAPS and EMD. The values of χECG,
χPEMAPS, and χEMD at a given index are three estimates of the
same NN interval. Figure 5 shows the agreement between χECG

and χPEMAPS on the one hand, and χECG and χEMD on the other
hand. In all plots in this section, the lack of agreement between
two measures is summarized by the mean μ̂ and the standard
deviation σ̂ of their difference points.

Due to the sampling, the entries of χECG, χPEMAPS, χEMD,
and thus the differences χECG – χPEMAPS and χECG − χEMD, are
discrete. Hence, a regular raster can be recognized in Fig. 5, and
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Table 3 Change of RMSSD (in percent) related to condition changing; cross-correlation coefficients r
and p-values (t-test) give a comparison of all 11 RMSSD values between ECG and NIRS.

From standing to sitting From resting to exercise

Subject ECG PEMAPS EMD ECG PEMAPS EMD

1 76.76 67.47 64.43 − 22.24 − 17.45 − 11.74

2 79.27 74.42 73.73 − 42.98 − 40.00 − 40.33

3 7.52 6.80 11.60 − 21.48 − 18.27 − 21.74

4 70.65 65.84 64.90 − 51.40 − 51.16 − 49.50

5 45.85 45.71 28.17 − 21.47 − 19.45 − 14.50

6 51.37 48.28 47.89 − 30.92 − 31.64 − 32.07

7 30.00 29.65 7.70 − 28.30 − 24.76 − 18.19

8 − 2.68 − 5.06 2.92 7.97 20.10 − 4.62

9 6.10 9.42 8.72 − 47.63 − 40.71 − 41.72

10 10.26 6.85 12.53 − 6.51 − 0.70 − 7.44

11 32.63 29.70 28.07 − 30.53 − 23.66 − 23.81

r 0.9963 0.9561 0.9892 0.9289

p 6.37×10−11 4.28×10−06 8.14×10−09 3.59×10−05

often the pair of values at a given index in χECG and χPEMAPS or
χECG and χEMD is not unique. Thus, the size of a single point
in Fig. 5 is proportional to the number of occurrences of the
corresponding entry pairs.

The mean of NN intervals in all subjects (derived from ECG
signals), i.e., the mean of x-coordinates of all points in Fig. 5, is
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Fig. 5 Agreement between NN intervals in all subjects derived from
ECG and those estimated from NIRS using PEMAPS (upper plot),
and using EMD (lower plot); μ̂1 = 0.00008 s, σ̂1 = 0.00755 s, μ̂2
= 0.00008 s and σ̂2 = 0.01133 s. These types of plots, in conjunc-
tion with testing agreement, was proposed in Ref. 10. The size of a
single point in the plot is proportional to the number of occurrences of
the corresponding entry pairs.

0.84 s. An NN interval estimated with PEMAPS or EMD differs
from this mean on average by σ̂1/0.84s = 0.9%, or σ̂2/0.84s
= 1.35%, respectively.

Figure 6 shows SDNN, calculated from ECG using Eq. (1),
SECG, versus its difference to SPEMAPS and SEMD. Figure 7 shows
the same for RMSSD. The mean of SDNN values in all subjects
(derived from ECG), i.e., the mean of x-coordinates of all points
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Fig. 6 Agreement between SDNN derived from ECG and SDNN es-
timated from NIRS using PEMAPS (upper plot), and EMD (lower
plot); μ̂3 = −0.00084 s, σ̂3 = 0.00032 s, μ̂4 = −0.0014 s, and σ̂4
= 0.0007 s. Every point was derived from the entire experiment with
one subject.

Journal of Biomedical Optics August 2011 � Vol. 16(8)087002-6



Trajkovic, Scholkmann, and Wolf: Estimating and validating the interbeat intervals of the heart...

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

−0.008

−0.006

−0.004

−0.002

     0

μ̂5

μ̂5 + 2σ̂5

μ̂5 - 2σ̂5

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

−0.008

−0.006

−0.004

−0.002

     0

μ̂6

μ̂6 + 2σ̂6

μ̂6 - 2σ̂6

RECG [s]

RECG [s]

R
E
C

G
-
R

P
E
M

A
P
S

[s
]

R
E
C

G
-
R

E
M

D
[s

]

Fig. 7 Agreement between RMSSD derived from ECG and RMSSD
estimated from NIRS using PEMAPS (upper plot), and EMD (lower
plot); μ̂5 = −0.00247 s, σ̂5 = 0.00097 s, μ̂6 = −0.00452 s, and
σ̂6 = 0.00196 s. Every point was derived from the entire experiment
with one subject.

in Fig. 6, is 0.08 s. A SDNN value, derived with PEMAPS or
EMD, differs from this mean on average by σ̂3/0.08s = 0.4%
or σ̂4/0.08s = 0.88%, respectively. The average differences for
RMSSD are σ̂5/0.038s = 2.55% and σ̂6/0.038s = 5.16%.

In Figs. 6 and 7, the differences between the two measures are
biased, i.e., μ̂3, . . . , μ̂6 are different from zero. This is caused
by an error when detecting R peaks (ECG) and diastoles (NIRS)
in discrete-time signals. The issue is explained in the appendix
of this paper.

8 Discussion and Conclusion
As stated at the end of Sec. 7, the average discrepancies between
SDNN from ECG and SDNN from NIRS are 0.4% (PEMAPS)
and 0.88% (EMD). In Ref. 3, the risk of mortality was compared
between two groups of subjects; in one group SDNN < 0.05 s,
in the second group SDNN > 0.1 s, which is >100% higher
than in the first group. Conclusively, SDNN derived from NIRS
with the proposed approaches could be sufficiently accurate to
derive the risk of mortality.

As shown in Ref. 8, EMD can be applied to signals from
various sources in nature and does not depend on amplitude
or frequency of the oscillations to be reconstructed. The ver-
sion of PEMAPS used in this work is limited to signals with a
strong (initial estimate Ã1, Sec. 4) and rather high (≈ 0.4 Hz)
fundamental frequency.

The NIRS instrumentation should capture at least the fun-
damental frequency of the heartbeat oscillation, i.e., the sam-
pling rate of NIRS should at least be 2Hmax = 6 Hz if Hmax

= 180 bpm is the maximal heart rate. We tested this success-
fully by interpolating a 6 Hz NIRS signal to 100 Hz from which
the NN intervals were derived with the proposed approaches.
The correlation coefficients were as high as deriving the NN
intervals from a real 100 Hz NIRS signal. Interpolating was
necessary, since low sampling rates induce an error when deriv-
ing NN intervals. In Ref. 11, for example, the influence of this
error on the power spectrum of the NN intervals is quantified.

We address the influence of this error on SDNN and RMSSD in
the appendix of this paper.

Both methods can be used with arbitrary signal lengths. The
only limiting factor is RAM. If the amount of RAM does not
suffice to analyze a 24 h recording as one block, the signals
can be split into several blocks, each being analyzed separately.
The implementations we used in this work require for a 15 min
long NIRS signal ≈1.3 GB (PEMAPS) and ≈60 MB (EMD) of
RAM.

Between subjects, the used wavelengths and SNR Eq. (15)
vary considerably, which has no high impact on the correlation
coefficients in Table 1, e.g., compare subjects 1 and 8 concerning
SNR and subjects 5 and 11 concerning wavelength.

The higher SDNN, the larger the variability between all NN
intervals in the evaluated NIRS or ECG signal. The higher
RMSSD, the larger the variability between successive NN in-
tervals in the evaluated NIRS or ECG signal. According to
Ref. 12, RMSSD relates mainly to the parasympathethic activ-
ity, whereas SDNN relates to sympathetic and parasympathetic
activity. In all subjects (except for subject 8) in Table 3, RMSSD
from ECG considerably increases from standing to sitting and
decreases during sitting from resting to performing the exercise,
which is also detectable from NIRS signals using PEMAPS and
EMD. On the contrary, SDNN shows no such uniform changes
over all subjects. In each subject in Table 2, the changes of
SDNN from NIRS agree with their ECG correspondent more
than the changes of RMSSD. In addition, the more the RMSSD
and SDNN values differ from 0, the better they agree between
ECG and NIRS.

In Refs. 13–16, NN intervals and HRV measures derived
from ECG were compared to their correspondents from PPG.
In Ref. 13 correlations 1 > r > 0.97 were found between HRV
and PRV in 44 subjects. Frequency domain and time domain
measures were calculated. All signals were sampled at 400 Hz.
In Ref. 14 where 10 subjects participated, these correlations are
in the range 0.99985 > r > 0.962. All signals were sampled
at 400 Hz. In Ref. 15 the median correlation coefficient of the
NN intervals derived from ECG and their PPG correspondents
in 10 subjects is r = 0.97 (compared to the medians 0.995355
and 0.988709 in Table 1). All signals were sampled at 1 kHz.
In Ref. 16, the same coefficient was derived from 42 subjects as
r = 0.91 (including an outlier). The ECG signals were sampled
at 200 Hz; PPG signals were sampled at 100 Hz. We conclude
that our results show a slightly higher agreement, although we
used considerably lower sampling rates.

Many factors can affect the agreement between NN intervals
derived from ECG and the corresponding ones estimated from
NIRS using PEMAPS and EMD, e.g., external forces on the
arterial vessels, pathologies, methodical problems, small and
unnoticed movement artefacts, and variability in time which the
pulse pressure waveform takes to propagate through the arterial
tree. Our results show that with healthy subjects who are not
exposed to mechanical forces and behave calmly during the
experiment, the impact of these factors is negligible.

PEMAPS estimates correspond closer to ECG than the EMD
estimates, i.e., σ̂1 < σ̂2 in Fig. 5, |μ̂3| < |μ̂4| and σ̂3 < σ̂4 in
Fig. 6, and |μ̂5| < |μ̂6| and σ̂5 < σ̂6 in Fig. 7.

Compared to EMD, the version of PEMAPS used in this
work is (i) slower and requires more RAM, (ii) less error-prone,
and (iii) set up in a more general way, i.e., the input arguments
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of the PEMAPS implementation are the same for all subjects.
When using EMD, the user must examine the intrinsic mode
functions (see Sec. 5) by eye and set ξ1 in Eq. (12) manually for
every subject.

According to Ref. 17 the clinical outlook of near-infrared
techniques is noninvasive (i) brain imaging by providing func-
tional and metabolic maps of the activated brain cortex, (ii)
measurement of changes and absolute values in oxy- and de-
oxyhemoglobin, (iii) measurement of blood pressure changes,
and (iv) measurement of respiratory rate. In all these applica-
tions, NIRS coregisters information on NN intervals; this could
give new physiological insights. Furthermore, in multimodal
measurement setups with strong electromagnetic fields, e.g., as
caused by magnetic resonance imaging or computed tomogra-
phy, ECG may be disturbed, while NIRS would function prop-
erly.

Appendix A: SDNN and Sampling
In this section, based on the error induced by the sampling,
μ̂3 < 0 and μ̂4 < 0 in Fig. 6 are motivated, and a lower bound
for σ̂1 and σ̂2 in Fig. 5 is derived.

Let Il be the unknown (continuous-time) position of the l’th
maximum, and let Îl be the (discrete-time) position of the de-
tected maximum (see Fig. 8). The continuous-valued discrep-
ancy Dl = Il − Îl is assumed to be uniformly distributed over
the interval [− T

2 , T
2 ] with variance σ 2

D = T 2/12.
The discrepancy between the l’th real and the l’th detected

NN interval is given as

	l = Il+1 − Il − ( Îl+1 − Îl )

= Dl+1 − Dl . (16)

It follows that the difference of two uniformly distributed ran-
dom variables 	l must be triangularly distributed over the in-
terval [−T, T ] with variance σ 2

	 = 2σ 2
D = T 2/6. In our case,

this variance is σ 2
	E

= T 2
ECG/6 = 1/(6 f 2

ECG) ≈ 0.00001017s2

(ECG) and σ 2
	N

= 1/(6 f 2
NIRS) ≈ 0.00001667s2 (NIRS).

By rearranging Eq. (16), it follows that

Îl+1 − Îl = Il+1 − Il − 	l . (17)

Let the l’th entry of χECG in Fig. 5 be modeled, according to
Eq. (17), as

χE,l
�= Il+1 − Il − 	E,l (18)

real NN interval

NN interval overestimated

real NN interval

4T3T0                                                                                                       T6 7TT

0 2T 3T 4T 5T 7T

NN interval underestimated

Il Il+1

Il

Îl Îl+1

Îl+1Il+1Îl

Fig. 8 The angulated line pairs represent R waves in a continuous-
time ECG signal which is sampled (circles) at times 0, T, 2T, . . .. The
positions of the R wave peaks are unknown. Each R peak (marked
with an unfilled square) is enclosed by two samples; the higher one is
detected.

with discrepancy 	E,l between the l’th real and the l’th detected
NN interval; analogously

χN,l
�= Il+1 − Il − 	N,l (19)

in the case of NIRS. Let σ 2
χE

be the variance of χE,l and let σ 2
χ

be the variance of Il+1 − Il . With respect to Eq. (18),

σ 2
χE

= σ 2
χ + σ 2

	E
. (20)

Likewise, let σ 2
χN

be the variance of χN ,l . With respect to
Eq. (19),

σ 2
χN

= σ 2
χ + σ 2

	N
. (21)

From σ	E < σ	N , Eqs. (20) and (21), it follows that σχE <

σχN ; this motivates μ̂3 < 0 and μ̂4 < 0 in Fig. 6, since SECG

is an estimator of σχE and SEMD and SPEMAPS are estimators of
σχN

In Fig. 5, according to Eqs. (18) and (19), the quantity on
the y-axes can be modeled as χE,l − χN ,l = 	N ,l − 	E,l . The

distribution of χE,l − χN ,l has standard deviation
√

σ 2
	E

+ σ 2
	N≈ 0.00518 s. The latter may be seen as a lower bound for σ̂1 and

σ̂2, since the error in estimating NN intervals is not only caused
by the sampling.

Appendix B: RMSSD and Sampling
In this section, based on the error induced by the sampling,
μ̂5 < 0 and μ̂6 < 0 in Fig. 7 are motivated.

By expanding the squared term in Eq. (2), it follows that the
expectation value

E[R2] = 2σ 2 + 2μ2 − 2

L − 1

L−1∑
l=1

E
[
χl+1 · χl

]
(22)

with variance σ 2 and mean μ of χl .
Let μχE be the mean of χE,l in Eq. (18); let μχN be the mean

of χN ,l in Eq. (19); let μχ be the mean of In+1 − In . Since the
means of 	E,l and 	N ,l are 0,

μχE = μχN = μχ. (23)

After replacing χl by χE,l , and thus σ 2 and μ by σ 2
χE

and
μχE , in Eq. (22) and using Eqs. (20) and (23), the expectation
value of the square of RECG in Fig. 7 is given as

E
[
R2

ECG

] = 2
(
σ 2

χ + σ 2
	E

) + 2μ2
χE

− . . .

2

L − 1

L−1∑
l=1

E
[
χE,l+1 · χE,l

]
. (24)

By (i) substituting χE,l and χE,l+1 in Eq. (24) ac-
cording to Eq. (18), (ii) then expanding their prod-
uct, (iii) assuming that 	E,l is independent of Il

and Il+1 and (iv) using E[	E,l ] = 0, it follows
that

E
[
R2

ECG

] = 2
(
σ 2

χ + σ 2
	E

) + 2μ2
χE

− . . .

2

L − 1

L−1∑
l=1

E
[
(Il+2 − Il+1)(Il+1 − Il )

]
.

(25)
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Analogously, it follows from Eqs. (21) and (23) that

E
[
R2

NIRS

] = 2
(
σ 2

χ + σ 2
	N

) + 2μ2
χN

− . . .

× 2

L − 1

L−1∑
l=1

E
[
(Il+2 − Il+1)(Il+1 − Il )

]
.

(26)

With respect to Eq. (23), the difference between Eqs. (25) and
(26) is

E
[
R2

ECG

] − E
[
R2

NIRS

] = 2σ 2
	E

− 2σ 2
	N

.

From σ 2
	E

< σ 2
	N

[paragraph after Eq. (16)], it follows that

E
[
R2

ECG

] − E
[
R2

NIRS

]
< 0

which motivates μ̂5 < 0 and μ̂6 < 0 in Fig. 7.
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