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Abstract. We present a theory to extend the classical Abbe resolution limit by introducing a spatially varying phase
into the illumination beam of a phase imaging system. It allows measuring lateral and axial distance differences
between point sources to a higher accuracy than intensity imaging alone. Various proposals for experimental
realization are debated. Concretely, the phase of point scatterers’ interference is experimentally visualized by
high numerical aperture (NA = 0.93) digital holographic microscopy combined with angular scanning. Proof-of-
principle measurements are presented by using sub-wavelength nanometric holes on an opaque metallic film. In
this manner, Rayleighs classical two-point resolution condition can be rebuilt. With different illumination phases,
enhanced bandpass information content is demonstrated, and its spatial resolution is theoretically shown to be
potentially signal-to-noise ratio limited. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3640812]
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1 Introduction
The limit of resolution is generally expressed by Rayleigh’s
criterion of resolution given by

dmin = α
λ

NAMO
, (1)

limited by microscope objective’s numerical aperture NAMO and
optical wavelength λ. Coherently illuminated imaging systems
scale in Eq. (1) with a factor of αcoh = 0.82. Therefore, they
suffer from an inferior lateral resolution compared to their inco-
herent counterpart αincoh = 0.61.1, 2

On the other hand, coherent imaging is an attractive research
tool in many fields of biological research.3 Techniques such
as digital holographic microscopy (DHM) have the capability
of imaging amplitude and quantitative phase simultaneously.4

Consequently, the method is marker-free, noninvasive regarding
the light intensity, and only camera acquisition rate limited.

Many attempts have been made to overcome a shortage in
resolution power of coherent imaging systems. The general ap-
proach consists in exploiting unused degrees of freedom.5 Fol-
lowing that idea, interference of spherical waves can be used
to create phase vortex arrays.6, 7 Recently, the significance of
such phase singularities for resolution has been demonstrated.8

Following, it has been outlined how to fully exploit bandpass in-
formation content and how to directly improve coherent imaging
system resolving power.9

The purpose of this paper is to investigate the principal lateral
and axial resolution limits which can be related to the occurrence
of asymmetric singularities in phase. Based on this observation,
we elaborate concepts for coherent resolution beneath Abbe’s
limit [≤ λ/(2NAMO)] with high-NAMO.
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0041216933701; E-mail: yann.cotte@a3.epfl.ch.

2 Asymmetric Phase Singularities
The destructive interference between waves emitted from point-
scatterers results in phase singularities. Such discontinuities oc-
cur at spatial positions where the spherical waves emitted from
each hole are out of phase. As reported earlier,8 the orienta-
tion angle θ of those lines of singularities varies systematically
with the point-scatters’ pitch η. Our experimental realization of
point-scatterers is depicted in Fig. 1(a), whereas Fig. 1(b) shows
schematically their phase response in an image plane. A total
of four destructive interferences are possible for the two pairs
of rings. The characteristic spacing s between two out of phase
circles, r1 and r2, i.e., with phase difference �� = π , can be
calculated by

s = ��

kmax
= π

(2π/λ)NAMO
= λ

2NAMO
, (2)

with the maximal spatial frequency kmax = 2π/λ allowed by
NAMO. Following, our theoretical description is based on the ex-
perimental situation of an arbitrary phase difference �φ between
both emitters. In the case of �φ �= 0, for instance through a lon-
gitudinal displacement �z, a path difference �s = λ�φ/(2π)
is introduced in r2 = r ± �s + s (“+,” advanced phase; “ − ,”
retarded phase) relative to r1 = r . Hence, Eq. (2) transforms into
the effective spacing

s± = s ± �s = s(1 ± NAMO�φ/π ), (3)

which can be contracted or dilated. Combining the geometrical
relations of Fig. 1 and solving them for η results in8

η(θ±, r, s±) =
{

2r2 + 2rs± + s2
± − [

4r2(r + s±)2

−s2
±(2r + s±)2 cot2 θ±

]1/2
}1/2

, (4)

with the angle θ± relative to the symmetry axis and effective
spacing s± defined by Eq. (3). For the same pitch η, Eq. (4) must
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Fig. 1 In (a), SEM images of pair of nanoholes drilled by FIB in aluminum film at 100, 000× magnification. The images show nominal center-to-
center pitches η of 600, 500, 400 and 300 nm with according scale bars. In (b), schematic illustration of image plane in phase with �φ �= 0. Circles
show contours of equal phase emitted from two point sources located in the circles’ centers.

yield individually to pairs of asymmetric singularities summa-
rized in Eq. (5):

η(θ+, r, s+)
!= η(θ−, r, s−). (5)

Consequently, �φ dephased point-scatterers feature asymmetric
phase singularities oriented along θ±. The phase difference �φ

may offer advantages concerning the lateral as well as axial
resolution, as discussed in Sec. 2.1 and Sec. 2.2.

2.1 Axial Resolution
A longitudinal displacement �z of one of the point-scatterers
results in an offset phase difference

�φlong = 2πnm�z

λ
, (6)

giving rise to s± according to Eq. (3) in mounting medium of
refractive index nm . By inverting Eq. (4), we can predict the

angular dependence caused by Eq. (6):

θ±[η, r, s±]

= arctan
(
s±(2r + s±)

{
(s2

± − η2)
[
η2 − (2r + s±)2

]}−1/2 )
.

(7)

Equation (7) is plotted for a constant η in Fig. 2(a). Pairs of
singularities are symmetrically oriented in the case of �z = 0.
Asymmetry is introduced by the existence of �z �= 0, so that
one pair of singularities’ θ is decreased while the other pair’s
angle is increased. That dynamic holds up to �z of 0.32λ, at
which point θ+ reaches π/2 and cannot be further increased.
Therefore, Fig. 2(a) suggests a unique dynamic range of maxi-
mal 0.32λ as an upper limit. However, it also suggests that the
minimal distinguishable axial displacement is only signal-to-
noise ratio (SNR) limited by the read-out accuracy of the phase
singularities’ orientation. In Fig. 2(a), a statistical reading preci-
sion of σ = 4 deg (Ref. 8) is indicated, and the axial resolution
limit reads 0.05λ.

Fig. 2 Illustration of theoretical spatial resolution behavior based on asymmetric singularities. (a) Shows the singularities orientation with vertical
precision σ = 4 deg versus a longitudinal displacement at a given distance η = dmin,coh. (b) Shows the dilated and contracted effective spacing as
a function of the dephasing, whereby the latter one may be associated with d±

min of Eq. (9). The filled area indicates the advanced and retarded
spacings’ divergence.
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Typically, that can be related with an axial precision of �z
≈ 25 nm at λ = 532 nm, η = 400 nm and NAMO ≈ 1. Through
several ring measurements, one can obtain such a statistical
accuracy or better. On the other side, practical considerations,
like discretization concerns or asymmetric aberrations,8 might
limit axial resolution.

2.2 Lateral Resolution
Given that θ can maximally reach π/2, Eq. (4) converges to

lim
θ→π/2

η = s±, (8)

stating that the minimal deducible distance η is limited by s±.
Thus, a new lateral resolution d±

min limit is given for the maximal
angle of θ :

d±
min = min [η] = min

[
λ

2

( 1

NAMO
± �φ

π

)]
. (9)

Equation (9) basically states Abbe’s resolution limit from Eq. (1)
(αAbbe = 0.5) extended by an additive phase shift term. It results
in resolvable distances that are in principle only SNR limited, as
shown in Fig. 2(b), if �φ is arbitrarily tunable. That implies that
two point-scatterers at distances well beneath Abbe’s resolution
limit result in two asymmetric pairs of phase singularities. If
θmax exceeds π/2, only three singularities exist. In that situation,
criterions to avoid possible ambiguities would be necessary:

1. Broadening effects of phase singularities.10, 11

2. Phase scanning methods, as discussed in Sec. 3.

Eventually Eq. (9) is based on the assumption that �φ itself
can be created without any limitation on its lateral extension.
If, however, �φ is created by tilt illumination as suggested by
Fig. 3, the dephasing is a function of η as further discussed in
Sec. 3.

3 Experiment
For the proof of principle, we use a test target consisting of a
thin opaque aluminum film (thickness = 100 nm) on a conven-
tional coverslip.12, 13 Nanometric apertures (�nominal = 80 nm)
are drilled by focused ion beam (FIB) milling in the coating and
are placed at very close pitches η. The fabricated pitch is con-
trolled and measured by scanning electron microscopy (SEM),
as shown in Fig. 1(a). The different double hole series serve as
experimental test targets. For phase imaging, a DHM setup in
transmission configuration (cf. Fig. 3) is used. The light source is
a neodymium-doped yttrium aluminium–garnet laser (Nd:YAG)
at wavelength λ = 532 nm. The DHM setup is equipped with
a microscope objective, 63 × NAMO = 0.93 (in air) in combi-
nation with an additional relay magnification to reach a lateral
sampling δx of 80 nm. The condenser lens’ numerical aperture,
called NAcond, is 0.25.

It is difficult to experimentally realize exact and small axial
displacements �z of one hole relative to another. Instead, we
present a proof-of-principle measurement of the impact of �φ

on lateral resolution. The phase difference �φ is created by a
wedge prism which is put in imaging condition with respect to
the sample by a 4-f system, shown in Fig. 3. The incident angle
α can maximally reach the steepest angle allowed by NAcond

used to excite the point-scatters. Hence, the phase difference

�φlat = 2πnmηsinα

λ
cosβ, (10)

where α is defined by the condenser lens α

= arcsin(NAcond/nm), without mounting medium (nm = 1).
The rotation angle β of the wedge prisms in Eq. (10) serves
to tune �φ. The maximal singularities’ asymmetry is reached
at β = [0, π], whereas perpendicular β = [π/2, 3π/2] holds
for symmetric singularities configuration. By introducing
Eq. (10) in Eq. (3), the effective spacing becomes NA limited
by condenser and MO

s± = λ

2NAMO
± ηNAcond cos β. (11)

Furthermore, the maximal condition for resolution in Eq. (8)
states s± ≤ η. Thus, according to Eq. (9), the minimum of
Eq. (11) yields for the resolution limit using tilt illumination

d+
min = min [η] = λ

2NAMO [1 + NAcond]
. (12)

In a practical imaging system, the resolution limit can be esti-
mated to reach minimally

lim
NAcond→max

lim
NAMO→max

d+
min ≈ λ

7.2
, (13)

assuming a maximal possible immersion NA of about 1.46. With
a short optical wavelength λ = 400 nm, the lateral limit with tilt
illumination in Eq. (13) leads to d+

min ≈ 60 nm.

4 Results
In Figs. 4(a), 4(c), and 4(k), and Figs. 4(g), 4(i), and 4(k) the
phase singularities’ behavior for tuning β is demonstrated with
different pitches η. It can be seen that singularities’ orientations
can be indeed tuned by introducing a phase difference �φ that
is controlled by the wedge prism’s orientation β, as defined in
Fig. 3.

The phase singularities are symmetrically oriented for a
perpendicular holes’ excitation (β = π/2), shown in Fig. 4(c)
for η = 400 nm and Fig. 4(i) for η = 300 nm. Both images show
the phase map of distances η well beneath the Rayleigh resolu-
tion limit of dRayleigh

min ≈ 470 nm. The pitch of image Fig. 4(c) is
about Abbe’s resolution limit of dAbbe

min ≈ 300 nm. Thus, four sin-
gularities are observable in Fig. 4(c), while they seem to merge
to two broadened singularities in Fig. 4(i).

By detuning β, �φ �= 0 can be controlled and the phase
singularities become asymmetrically oriented. In the case of η

= 400 nm, the two singularities merge on one side while opening
up further on the opposed side. This results in a total of three
singularities in Figs. 4(a) and 4(e). In the case of η = 300 nm, an
originally merged singularity opens up again and consequently
results in three singularities in Figs. 4(g) and 4(k).

The importance of the described behavior can be well ob-
served in their spectra, depicted in Figs. 4(b), 4(d), and 4(f),
and Figs. 4(h), 4(j), and 4(l). The Fourier-transform leads to a
mixing up of modulus and phase of the complex image. Thus,
the real space phase singularities are seen as minimum trans-
mittances in the amplitude k-space (wavenumber). Figures 4(d)
and 4(j) visualize the significance of dRayleigh

min and dAbbe
min . At

Abbe’s resolution limit of η = 300 nm in Fig. 4(j), the minimal
transmittances reach the bandpass’s edges, which corresponds
to a wavenumber content of k ≈ 2(2π/λ).
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Fig. 3 Scheme of experimental setup. In DHM transmission configuration, a rotatable wedge prism is used to tune illumination conditions. The
inset illustrates excitation beam’s orientation in side and top perspective of the test target [cf. Fig. 1(a)]. The beam propagates in the direction of β

(green arrow: k-vector) and is inclined by angle α.
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Fig. 4 Proof-of-principle measurements. The test target [cf. Fig. 1(a), η = 400 nm] is shown in phase images (a), (c), and (e) for different wedge prism
orientations β = [π/4, π/2, 3π/4], according to Fig. 3. The scale bar is 2μm×1μm and the black stroke lines indicate the idealized singularities.
Additionally, the log-amplitude spectra of the complex fields are shown in images (b), (d), and (f) for the respective β values, including the spectrally
measured θ± angles (white dashed lines). Images (g)–(l) show the according phase images and amplitude spectra for η = 300 nm of Fig. 1(a).
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Fig. 5 Comparison of theory and experiment. For η = 400 nm, the experimental θ± [cf. Figs. 4(a)–4(f)] are plotted in graph (a), together with
theoretical curves given by Eqs. (7) and (11). Additionally, a vertical region of trust of σ = 5 deg is indicated. In graph (b), the same comparison is
shown for η = 300 nm of Figs. 4(g)–4(l).

The transmittances minima shift asymmetrically to different
frequencies as β is detuned, yielding for �φ �= 0. As observed
in Fig. 4, their positions shift on one spectral side to lower
and on the other spectral side to higher wavenumbers kx . In this
manner, higher frequencies that are originally not allowed by the
bandpass can be accessed. Eventually, it gives rise to resolution
beneath Abbe’s limit. The maximal shift of the transmittances
minima in Fig. 4 corresponds to the largest angle θ of the phase
singularities.

The comparisons of real-space with its corresponding spectra
reveal that θ can be more precisely assessed in k-space. For
instance, one can see that the three singularities in phase image
Fig. 4(a) correspond actually to four singularities in k-space. In
real space, this behavior is barely observable due to broadening
effects.10, 11

For the following analysis, the angle θ is directly measured
from the spectra in Fig. 4 and results are visualized in Fig. 5.
It compares the experimental values of θ directly to the theory
of Eqs. (7) and (11). Nonzero phase shifts, i.e., β �= π/2, lead
to a splitting up of singularities’ orientation θ±. In Fig. 5(a),
angles θ± never exceeds the maximal orientation of θ = π/2.
Contrarily, in the case of Fig. 5(b), the saturation point is already
reached by little detuning of β. It features only three singularities
over a large β-range. The experimentally observed behavior
follows the theoretical prediction within the angular precision,
both illustrated in Fig. 5.

5 Discussion
The test target of Fig. 1(a) has been especially designed to an-
alyze the resolving power of phase imaging. It allows direct
proof-of-principle measurements and demonstrates the practi-
cal role of coherent cross-talk in phase imaging. In a more
general view, any nontransparent object could be thought to be
composed of a three-dimensional distribution of scatterers, thus
resulting in coherent cross-talk. Since the presented method is
based on interferometric phase imaging, the described effects
are generally less dependent on a number of photons.14 Even in
the case of phase objects, the occurrence of phase singularities
has been reported.6

The observation of phase singularities serves two purposes.
On the one hand, it offers a direct method of measuring lateral
and axial distance differences between point sources to a higher
accuracy than intensity imaging alone. On the other hand, it
allows to study the information content of any coherent imag-
ing systems bandpass. In Sec. 4, k-space information content is
demonstrated to be in accordance with Abbe’s diffraction limit
in configuration of Fig. 6(a). We propose the technique of com-
plex deconvolution to fully exploit bandpass limited information
content.9

To further increase bandpass’ information content beyond
Abbe’s limitation, phase shifts �φ can be introduced as sum-
marized in Fig. 6(b) and Eq. (9). Experimentally, such conditions
can be achieved for any sample by illumination beam scanning15

Resolving complex deconvolution  synthetic aperture  phase tuning
method:      + complex deconvolution  + scanning
Limited by: Abbe    illumination angle ‘α’  ΔΦ gradient width ‘γ’
         

Principle: (a) symmetric cross-talk  (b) asymmetric cross-talk (c) phase states

λ

  ηη
min

=λ/2 η
min

=λ/7 η

α

η
min

=γ

ΔΦ≠0ΔΦ=0 ΔΦ=π

η

γ

Θ Θ Θ
-

Θ
+

scatterer
EM-wave
k-vector
singularity

Θ
-

Θ
+

Fig. 6 Overview of concepts of lateral super-resolution techniques based on phase imaging.
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or sample rotation.16 Consequently, information content is in-
creased and may be exploited by synthetic bandpass aperture17

combined with complex deconvolution.16 In this configuration,
Eq. (10) teaches that resolution is limited by wavelength λ, tilt-
ing angle α, and scatterer’s distance η.

However, following the idea of tuning �φ, Fig. 6(c) suggests
how to overcome those limitations. We propose a tunable π-step
phase scanning method, which results in maximal asymmetric
singularity states. As known from STED or PALM-STORM,
beam modulation patterns such as phase plates18 or spatial light
modulation19 can be used to create first-order Bessel beams
with line-singularities. Alternatively, also a “doughnut” mode
beam intrinsically offers a steep π -step.20 In this manner, the
illumination beam itself can be used to scan through phase states
and switch them dependently of sample’s optical properties. The
technique’s resolution given by Eq. (9) should be, in principle,
only limited by phase gradient’s width γ , as seen in Fig. 6(c).
If combined with DHM detection, a marker-free resolution well
beyond λ/7.2 could be accessed, resulting in a new field of phase
imaging applications for biological research.21

6 Concluding Remarks
Based on fundamental geometry and elemental physical con-
siderations, resolution theory is extended for coherent imag-
ing systems. Scatterer’s relative axial displacement �z leads to
dephased signals. Their mutual interferences result in appear-
ance of asymmetric singularities in phase, which yield highly
sensitive axial resolution. Similarly, asymmetric singularities,
caused by beam phase shifts �φ �= 0, indicate improved lateral
resolution. For this case, the bandpass’ information content is
experimentally demonstrated to be extended. The experimental
proof confirms the correctness of derived theory. This theory
offers an alternative explanation on how to improve resolution
by angular scanning.15 In conclusion, the lateral resolution limit
can be extended by angular scanning techniques up to λ/7.2 and
beyond by π-step phase scanning.
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