IMAGING AND QUANTITATION OF A TISSUE-SELECTIVE LANTHANIDE CHELATE USING AN ENDOSCOPIC FLUOROMETER

Michael P. Houlne,† Darren S. Hubbard,† Gary E. Kiefer,‡ and Darryl J. Bornhop†
†Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, Texas 79409-1061;
‡Dow Chemical Company, Designed Chemicals R&D, Freeport, Texas 77541

(Received 7 January 1997; revised manuscript received Sep. 26, 1997; accepted for publication Oct. 10, 1997.)

ABSTRACT

Tissue spectroscopy and endoscopy are combined with a tissue site-selective fluorescent probe molecule to demonstrate in vitro, spatial, remote, quantitative imaging of the rat small intestine. The probe molecule employed, Tb-3,6,9-tris(methylene phosphonic acid n-butyl ester)-3,6,9,15-tetraaza-bicyclo[9.3.1]pentadeca-1(15),11,13-triene (Tb-PCTMB), is shown to bind with the small intestine and provide improved image contrast. High sensitivity is possible due to the absorption-emission Stokes’s shift exhibited by the Tb-PCTMB complex. Excitation is centered near 270 nm and multifeatured emission is observed at 490, 550, 590, and 625 nm. Sprague-Dawley rats were dosed with the Tb-PCTMB complex, which shows biodistribution, leading to preferential binding to the inner surface of the small intestine. It is shown that the fluorescent image, taken at 550 nm, can be used to quantify the amount of Tb-PCTMB present in an excised tissue sample. The 3r detection limits are found to be in the femtomole range. An optical mass balance for Tb-PCTMB-dosed small intestine is performed and along with radiotracer biodistribution, demonstrates that approximately 40% of the marker probe resides in the endothelial tissue of the small intestine inner lumen. This result is of particular interest since most adult colon cancers develop in this region. These results demonstrate the ability to perform spatial, quantitative, in vitro, endoscopic imaging of a complex biological sample using a probe marker. © 1998 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(98)00302-5]

Keywords lanthanide chelate; endoscopic imaging; tissue selectivity; fluorescence.

1 INTRODUCTION

Significant advances have been made in the area of tissue spectral analysis and it now appears possible to both identify and grade a tumor with the use of these approaches.1–6 Currently, work has been directed toward contrasting native spectroscopic signals of normal and abnormal tissue in an effort to generate spectrochemical fingerprints useful for tissue diagnosis.2,5 However, to effectively treat tumors, they must be identified and histopathologically graded in early stages of development. Such detection can be problematic since small tissue abnormalities often yield only low spectrochemical signals or relatively small spectral changes. It can be difficult to measure the contrast of these small signals since surrounding normal tissues often exhibit large background spectral signals.

Effective clinical identification and evaluation of abnormal tissue at the earliest stages of development is best accomplished remotely and with minimal invasion.7–12 In addition, such analysis should be multidimensional in nature. That is, it should provide quantitative, spectroscopic information about the tissue itself as well as spatial information (tissue surface area). Steps toward multidimensional imaging using endoscopy have been demonstrated in several areas of tissue evaluation. These include histopathological investigation of human artery wall tissue using Raman spectroscopy,3 fluorescence detection of abnormal cervical tissue,13 detection of dysplasia or carcinoma in the lung,9 identification of colonic mucosa abnormalities,14,15 and tracking of photodynamic cancer therapy.16 In work by Mosher and co-workers,16 a fluorescence microscope was used to construct a three-dimensional graph of fluorescence intensities found in OAT 75 cells loaded with the chlorophyll-derived photosensitizer, phophorbide a. Digitizing the TV images of the samples allowed image reconstruction.

Cothren et al. have combined colonoscopy with laser-based spectroscopy to probe native fluorescence to optically grade “observable” abnormal tissues in the colon.6 These results are quite promising, yet the technique is limited to either later-stage tissues or large sites. Lam et al. demonstrated that endoscopy can be combined with laser-excited autofluorescence to improve tissue spectra using a fluorescence bronchoscope imaging system based...
on an He:Cd laser. The detection of dysplasia and carcinoma of the lung is 50% better with spectroscopy than with white-light endoscopy.

One alternative approach to probing native spectroscopic properties is to employ a contrast enhancement agent, an exogenous molecular probe. Such techniques have been used in magnetic resonance imaging (MRI), in the analysis of cellular function, for the determination of localized pH in tissues, for improved cancer detection, and in the study of membrane potential and ion transport. In particular, organic–metal chelate compounds have recently been shown to be useful as tissue site-selective markers. However, some limitations in using chelates as probes have been low water solubility, poor molecular stability, and poor tunability of tissue site selectivity.

In contrast to the rare-earth fluorescent markers used earlier in analytical cytology, we are using a new class of fluorescent probe molecules with good chemical stability, reasonable water solubility, and significant tissue site selectivity. The probes are polyazamacrocyclic chelates of terbium. These markers are advantageous for tissue imaging for several reasons. First, because the chemical structure and molecular charge can be easily modified (by side-chain substitution), high tissue site selectivity is possible. In this paper it is shown that the PCTMB chelate is largely selective for the endothelial layer of the small intestine. Second, we have found that millimolar aqueous solutions exhibit no measurable cytotoxicity. Third, they exhibit a large absorption-emission Stokes’s shift, improving contrast in biological imaging by spectrally resolving the sample signature from the background fluorescence of the unaffected tissue.

In our present work we demonstrate spatial, quantitative, multidimensional, endoscopic imaging of rat small intestine in vitro using Tb-3,6,9-tris(methylene phosphonic acid n-butyl ester)-3,6,9,15-tetraaa-bicyclo[9.3.1]pentadeca-1(15), 11,13-triene, Tb–PCTMB (Figure 1). Our current optical train allows spatial imaging on the micron level and sensitivity to Tb–PCTMB at the subpicomole level.

2 EXPERIMENTAL

A block diagram of the endoscopic fluorometer is shown in Figure 2. The sample was affixed to a microscope slide, positioned using micrometer-driven translation stages, and illuminated with the light source. White light illumination was delivered by a fiber optic-coupled 150-W Xe microscope illuminator (Zeiss, Germany). Fluorescence was initiated by a 75-W ultraviolet (UV) curing lamp (Dymax, Inc., Model PC-3) through a liquid light guide (Dymax, Inc.) coupled to a 270-nm interference filter with a 20-nm bandwidth (Omega Optical, part 270 BP20). As specified by the U.S. Food and Drug Administration (FDA), which states that “biologically effective radiation cannot exceed 0.003 J/cm² for UV radiation between 180 nm and 400 nm,” we determined that for a 5-s exposure time there was approximately 0.004 J/cm². This value is slightly higher than needed to negate carcinogenicity testing, but certainly close enough to the FDA limits to suggest clinical applicability. Fluorescent images were collected at about 90 deg to excitation with a 210-mm-long Hopkins plastic rod-lens endoscope (Model 1005-9029, Galileo, Inc.). The image from the scope was passed through a 550-nm interference filter with a 10-nm bandwidth (Omega Optical, part 550 DF10), magnified with a 5× glass microscope objective lens (further eliminating unwanted UV light by the collection optics), and directed onto a thermoelectrically cooled CCD (Model 1005-9029, Galileo, Inc.). The image from the scope was passed through a 550-nm interference filter with a 10-nm bandwidth (Omega Optical, part 550 DF10), magnified with a 5× glass microscope objective lens (further eliminating unwanted UV light by the collection optics), and directed onto a thermoelectrically cooled CCD (Model 1005-9029, Galileo, Inc.). The image from the scope was passed through a 550-nm interference filter with a 10-nm bandwidth (Omega Optical, part 550 DF10), magnified with a 5× glass microscope objective lens (further eliminating unwanted UV light by the collection optics), and directed onto a thermoelectrically cooled CCD (Model 1005-9029, Galileo, Inc.). The image from the scope was passed through a 550-nm interference filter with a 10-nm bandwidth (Omega Optical, part 550 DF10), magnified with a 5× glass microscope objective lens (further eliminating unwanted UV light by the collection optics), and directed onto a thermoelectrically cooled CCD (Model 1005-9029, Galileo, Inc.).
samples weighed 3 mg each and were mounted in the sample holder with mounting wax. The fluorescent images were quantified and the amount of Tb–PCTMB was determined based on the calibration plot. The data presented are representative of the level of fluorescence detected within the ileum region of the organ. In addition to the fluorescence image, an image of the intestine sample was collected using a 150 W white light source for illumination with the emission filter removed.

In vivo biodistribution studies of the complex were also carried out using Sprague-Dawley rats. In this case, the same organic chelate was employed, except that the radioactive 153Sm metal was used in the complex. A stock 153SmCl$_3$ solution was prepared by adding 2 ml of 3×10^{-4}M of 153SmCl$_3$ (radioactive) in 0.1 N HCl to 2 ml of 3×10^{-6}M 153SmCl$_3$ carrier solution. Appropriate ligand solutions were then prepared in deionized water. After the two solutions were thoroughly mixed (pH = 2), the pH of the solution was raised to 7 using 0.1 N NaOH to facilitate complexation. Complexation was then evaluated by passing the sample solution (100 ml) through a Sephadex C-25 column, eluting (2×3 ml) with 4:1 saline (0.85% NaCl/NH$_4$OH), and comparing the amount of radioactivity in the eluent with that remaining on the column (free metal remains on the column). As earlier, Sprague-Dawley rats injected with the lanthanide chelate complex were euthanized after 30 min and their organs were removed. Radioactive counts from the tissue yielded the quantity of chelate in each of the tissue types.

3 RESULTS AND DISCUSSION

A qualitative white light image of the small intestine is shown in Figure 4(a). The view is of the inside of the lumen in a section of small intestine taken from the region known as the lower ileum. During dissection and mounting of the tissue sample, some of the mucosa layer pulled away
Fig. 4 (a) A diffuse reflectance white light image of the rat small intestine sample as collected by the endoscope. (b) Fluorescence endoscopic image of the sample. The rat was previously infused with 0.1 mmol/kg body weight of Tb–PCTMB. (c) A false color recreation of the fluorescence image showing preferential uptake and quantitation of solute.
from the surface lumen (e.g., the inside and edge of the lumen are shown in the unfolded tissue sample). This was inadvertent and was not necessary to generate the fluorescence signal. The left edge of the image shows a pseudoside view of a lumen wall and the connected mucosal lining. Tb–PCTMB appears to concentrate near the inner surface of the intestinal lumen (authors’ unpublished results) and thus the high signal intensity found in the fluorescence image. Further studies are under way to understand the nonuniform distribution properties, uptake mechanism, and “time-dependent” penetration properties of the marker compound.

It should be noted that under the relatively low magnification used (with reference to the scale bar in the image), a fairly large viewing area is detected. Using a relatively low magnification and a wide field of view, at the expense of losing cellular detail, we were able to sample large regions in relatively short periods, which would be needed in clinical endoscopy. While the diffuse reflectance image provides little information about the morphology of the tissue, particularly solute uptake, the corresponding fluorescence image [Figure 4(b)] shows preferential uptake of the chelate into the inner lumen surface (the thick left edge of the tissue) and epithelial lining (the flap lying on top of the specimen that was torn during dissection). To further enhance the visualization of the site-specific binding observed in fluorescence detection, we constructed a false color contour plot [Figure 4(c)], which shows that uptake is not only preferential to the organ (small intestine), but also to a particular region of the intestine. Quantitation is needed to better understand this unique tissue site-binding mechanism, which allows utilization of the Tb–PCTMB chelates as biological markers. We have begun these investigations as reported here, using endoscopic fluorometry.

3.1 EXOGENOUS MARKER QUANTIZATION AND SYSTEM CALIBRATION

For quantitation of exogenous markers in actual tissue samples, there must be high confidence that the fluorescence signal emanates from the Tb–chelate and is representative of the fluorescent marker uptake. In this study, no fluorescence was observed in dosed rat tissues other than the small intestine. Furthermore, virtually no fluorescence is observed if the chelate complex is not intact, because the unbound metal ion has a very low fluorescence cross section at 270 nm and when unbound metal ion is excited, the fluorescence is efficiently quenched by water molecules. Although free Tb³⁺ has been used in transmission emission microscopy (TEM), it is not likely that free Tb ion from the complex is available to bind to DNA, owing to the large stability constants of the metal–chelate compounds. At the level of detection for the system (picomoles), an unexpectedly large emission quantum yield for a DNA–Tb³⁺ complex would be needed to produce an appreciable signal. Investigations of free metal ion–tissue equilibration are under way to ensure that this unlikely (because of complex stability and free ion toxicity) contributor to background does not interfere with the measurement. In addition, to perform these quantitative investigations, the sensitivity to photon flux must be determined. This calibration requires the determination of background signal (noise) and fluorescent signal as a function of analyte (signal intensity vs. moles).

As described in the experimental section, the standard deviation of background (noise) was evaluated using undosed substrates. Next a calibration plot for signal versus analyte quantity was constructed (Figure 3). Substrate disks were infused with a constant volume of increasingly concentrated Tb–PCTMB solution and allowed to dry. The disks were then imaged to determine the average fluorescence signal. A 7500-pixel area of the CCD was interrogated (the region with appreciable fluorescent signal), giving an intensity vs. position histogram that subsequently yielded the signal vs. concentration value. As shown in Figure 3, using a fixed integration time of 5 s, the response was found to be linear over 1.5 decades in concentration, with a correlation coefficient of $R = 0.999$ and a slope of 3.36×10^{15} signal counts/mole.

The analytical sensitivity of any instrument can be defined by the minimal detectable quantity or detection limit. We calculate this limit at the 3σ level for an integration time of 5 s, where σ is the standard deviation of the mean fluorescence signal collected from five blank measurements. The blank measurements were made as described in the experimental section. Using the slope of the calibration plot and the relationship that $DL = 3\sigma / \text{slope}$, the minimal detectable quantity was determined to be 3.73×10^{-15} mol Tb–PCTMB/pixel. The most concentrated standard (0.55 nmol) had a corrected fluorescence signal of 303. Above this concentration, the camera automatic antiblooming compensation circuitry produces gray scale value (GSV) levels that do not scale linearly with concentration. Adequate sensitivity is available at the modest integration times employed. Throughout the investigations we chose to use the most conservative estimate of detection limits to evaluate system performance, e.g., using σ under the worst-case scenario of short integration times.

The approximate detection limit per smallest imaging unit, the CCD pixel, is determined using a calibration plot of average fluorescence signal per pixel vs. moles of analyte per pixel. Rearranging the equation for the calibration plot yields $y = mx + b$, and the following result is obtained:

$$Q_{\text{avg}} = 2.98 \times 10^{-16} I - 1.62^{-14}$$

where Q_{avg} is the moles of analyte per pixel and I is...
the fluorescence signal per pixel. Equation (1) is a direct relationship between average signal per pixel and quantity of analyte per pixel. With the use of Eq. (1), the total quantity of analyte in a sample region of any size may be estimated by multiplying Q_avg by the total number of pixels in the sampled image. Figure 4(c) shows the results of these calculations, allowing one to estimate the quantity of Tb–PCTMB in a particular region of the imaged tissue sample using the color scale.

To better quantify tissue-bound solute, we chose to determine the fluence rate and the escape function for the system to allow correction for excitation penetration depth and the amount of fluorescence that escapes from the medium using a model formulated by Gardner, Jacques, and Welch. The method uses a Monte Carlo simulation that treats fluence rate and escape function with respect to penetration depth. This assumes that the light distribution varies only with penetration depth. The fluence rate (φ) and escape function (G) are given, respectively, as follows:

\[φ(z) = E_0 [C_1 \exp(-k_1 z / \delta) - C_2 \exp(-k_2 z / \delta)] \]

(2)

\[G(z) = C_3 \exp(-k_3 z / \delta), \]

(3)

where z is the depth of the source fluorophore and C_1, C_2, C_3, k_1, k_2, and k_3 are parameters dependent on the diffuse reflectance, R_d. Empirical expressions for these seven parameters are given in Table 1.

Employing this one-dimensional light transport model, escape values dominate since the penetration depth of the excitation source (270 nm) is superficial (approximately 6 µm). Since the sample is studied in vitro, an air–tissue interface is present (η_tissue / η_air = 1.38) and the empirical equations in Table 1 may be used. Good approximations for µ_s and µ_a are 0.4 and 8 cm⁻¹, respectively, at 550 nm. The empirical constants used to calculate G(z) are

Table 1 Parameters for escape function calculations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>η_tissue / η_air=1.38</th>
<th>Calculated value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_d</td>
<td>(\exp[-7.84d])</td>
<td>0.42</td>
</tr>
<tr>
<td>C_1</td>
<td>3.09 + 5.44R_d - 2.12 (\exp[-21.5R_d])</td>
<td>5.37</td>
</tr>
<tr>
<td>k_1</td>
<td>(1 - [1 - {1/3}] \exp[-20.1R_d])</td>
<td>1.00</td>
</tr>
<tr>
<td>C_2</td>
<td>2.09 - 1.47R_d - 2.12 (\exp[-21.5R_d])</td>
<td>1.47</td>
</tr>
<tr>
<td>k_2</td>
<td>1.63 (\exp[3.40R_d])</td>
<td>6.80</td>
</tr>
<tr>
<td>C_3</td>
<td>0.28 + 0.78R_d - 0.14 (\exp[-10.7R_d])</td>
<td>0.61</td>
</tr>
<tr>
<td>k_3</td>
<td>(1 - 0.31 \exp[-6.12R_d])</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table 2 Results of quantitative calculations of Tb–PCTMB in the rat small intestine sample.

<table>
<thead>
<tr>
<th>Sampled region</th>
<th>Fluorescence signal/pixel</th>
<th>No. of sampled pixels</th>
<th>Total moles of Tb–PCTMB/pixel</th>
<th>Total moles of Tb–PCTMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>1976</td>
<td>(2.25 \times 10^{-14})</td>
<td>(4.44 \times 10^{-11})</td>
</tr>
<tr>
<td>2</td>
<td>117</td>
<td>228</td>
<td>(1.86 \times 10^{-14})</td>
<td>(5.37 \times 10^{-12})</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>684</td>
<td>(1.45 \times 10^{-14})</td>
<td>(9.91 \times 10^{-12})</td>
</tr>
</tbody>
</table>

* Correlated for losses as dictated by fluence calculations.
given in Table 1. $G(z)$ is found to be 0.66 for a penetration depth of 6 mm, so only 66% of the fluorescence escapes from the tissue matrix. The corrected quantities of Tb–PCTMB in each of the three regions of the sampled tissue are given in Table 2. This escape correction was also applied to the standard substrate fluorescence signal used to generate Figure 3 and Eq. (1).

As a first approximation toward total solute quantitation, the small intestine fluorescence image may be divided in three parts, labeled 1, 2, and 3 and shown in Figure 6. These regions are chosen since their gray-scale values exceed that of the background. The quantity of Tb–PCTMB per pixel in each of these regions is found by first correcting the gray-scale values for fluence and then by using Eq. (1), derived from Figure 3. Next, the total quantity of Tb–PCTMB in each of the three regions is found by multiplying the average quantity of TB–PCTMB by the integrated sample area. Finally, the total quantity of marker in the small intestine sample, as determined by optical interrogation, is the sum of the three sampled regions. This sum corresponds to about 59.7 pmol. The results of these calculations are summarized in Table 2.

These results demonstrate our ability to quantify the presence of a probe marker in a complex biological matrix at the picomole level. While the current detection limits are quite low, considering the simplicity of the optical system and complexity of the sampled matrix, lifetime detection would likely further improve sensitivity and is possible because the chelates exhibit long-lived emission properties. This avenue is currently under investigation in our laboratories. However, even the smallest amount of solute found in sampled region 3 is 9.91 pmol, roughly a factor of 4 higher than the minimum detectable limit for an imaged region of this size (2.55 pmol).

3.2 MASS BALANCE COMPARISON

Next we set out to compare our optical quantitation results with results obtained using radioactive biodistribution (Table 3). It should be noted that the values for radioactivity in Table 3 do not add up to 100% because a portion of the chelate is passed through the excretory system. In the current study, each rat was dosed with $100 \mu l$ of a $1 \times 10^{-4} M$ Tb–PCTMB solution, which corresponds to a total injected dose of $1 \times 10^{-8} M$ of complex. From the biodistribution studies, we would expect that approximately 58% of the injected compound would be found in the small intestine. Therefore, our optical interrogation method should quantify a total of $5.80 \times 10^{-8} M$ in the entire length of the organ. Hence, a 3-mg sample of small intestine from a total mass of 120 mg, dosed and analyzed by either the radiotracer technique or fluorescence method, should contain about 145 pmol of solute. Here we randomly selected sample sections (3 mg) from the intestine of an animal dosed with 10 nmol of the Tb complex. Upon interrogation of this section of small intestine with our fluorescence endoscope, we obtained the fluorescence images shown in Figures 5(c) and 6 and calculated that the section contained about 59 pmol of solute (Table 2). This fluorescence-normalized value is only about a factor of 2.5 smaller than that predicted by nuclear chemistry and corresponds nicely to the expected value of 145 pmol. Of course if the total emission were used,

<table>
<thead>
<tr>
<th>Tissue or organ</th>
<th>Percent distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>3.73</td>
</tr>
<tr>
<td>Liver</td>
<td>2.70</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.43</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.05</td>
</tr>
<tr>
<td>Muscle</td>
<td>1.09</td>
</tr>
<tr>
<td>Blood</td>
<td>0.14</td>
</tr>
<tr>
<td>Heart</td>
<td>0.02</td>
</tr>
<tr>
<td>Lung</td>
<td>0.04</td>
</tr>
<tr>
<td>Brain</td>
<td>0.00</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.08</td>
</tr>
<tr>
<td>Small intestine</td>
<td>57.98</td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.77</td>
</tr>
</tbody>
</table>
including the energy at wavelengths other than 550 nm, the quantity detected by the optical interrogation method would be more accurate.

It can be postulated that the difference between the expected solute quantity and the amount detected by fluorescence can be attributed to (1) the relatively short or limited penetration depth (6 μm) of the optical technique, allowing communication with just one or two epithelial cell layers; (2) the fact that the normal rat intestine epithelium is six to eight cells thick; and (3) the possibility of some of solute being bound in other parts of the small intestine. In the final analogy, the correlation between the two quantitation techniques is quite good, particularly given the small amounts of analyte administered or present in the tissue, the complexity of the matrix it lies within, and the simplicity of the instrumentation. Furthermore, the combination of quantitative endoscopic fluorometry for enhanced surface visualization with the recent observations suggesting selectivity of the Tb–PTCMB marker for colon tumors, could expand the utility of colon endoscopy, since over 90% of adult small intestine cancers begin as inner lumen surface abnormalities. While it has not been substantiated by experiment results, we believe that the phamokinetiks of Tb–PTCMB will be similar to that observed with compounds of similar structure, such as the Gd complex used for MRI contrast enhancement or the PDT photosensitizer aminoevulnic acid (ALA). In short, we expect that pathological tissues, such as tumors, will retain the complex much longer than normal epitheliom.

4 CONCLUSION

We have demonstrated remote, spatial, quantitative, endoscopic imaging of biological tissues in vitro. This is possible using an effective injected dose of just 10 nmol. Through the use of tissue site-selective fluorescent markers, we have been able to detect picomole quantities of analyte in a region of the small intestine where an abnormality is most likely to develop. In vivo, femtomolar detection limits under minimally invasive imaging, as described, facilitate contrast enhancement to improve endoscopic visualization. Furthermore, the technique should allow solute analysis in biological research areas, including detection of local pH and investigation of ion transport mechanisms. Preferential uptake of the lanthanide chelate molecules by pathological tissue could allow for early warning, disease identification, or diagnosis in real time using endoscopic imaging, an opportunity being investigated in the laboratory and the clinic.

Acknowledgment

This research was funded by grants from the Texas Tech University (TTU) Research Enhancement Fund, the TTU Institute for Biotechnology, and the Whitaker Foundation. Special thanks to Galileo instruments for the donation of the rod lens endoscopes.

REFERENCES

40. Personal communication with Steven L. Jacques, Laser Biology Research Laboratory, University of Texas, M. D. Anderson Cancer Center, Houston, TX.