INFRARED SPECTROSCOPY, MICROSCOPY, AND MICROSCOPIC IMAGING OF MINERALIZING TISSUES: SPECTRA-STRUCTURE CORRELATIONS FROM HUMAN ILIAC CREST BIOPSIES

Richard Mendelsohn,† Eleftherios P. Paschalis,‡ and Adele L. Boskey‡
†Rutgers University, Department of Chemistry, Newark, New Jersey 07102; ‡The Hospital for Special Surgery, Mineralized Tissue Section, Research Division, New York, New York 10021
(Paper BVS-01 received June 25, 1998; revised manuscript received Oct. 22, 1998; accepted for publication Oct. 30, 1998.)

ABSTRACT

Infrared microscopic images of the cortical region of human iliac crest biopsies have been obtained at ~7 μm spatial resolution and 8 cm⁻¹ spectral resolution with a 64×64 mercury–cadmium–telluride focal plane array detector coupled to a Fourier transform infrared microscope and a step scanning interferometer. Images of several spectral parameters provide information about the spatial distribution of the mineral (apatite) and protein (mostly collagen) components of the tissue. In addition, the image of a parameter known to reflect the crystallinity/perfection of the mineral phase, namely, the intensity ratio of bands at 1030 and 1020 cm⁻¹ within the phosphate ν₁, ν₃ contour, revealed a progressive increase in the apatite crystal size/perfection from the osteonal center to the periphery. Finally, a detailed comparison of the spatial distribution of the I(1020)/I(1030) ratio for the same osteon obtained by array detection and by conventional point-by-point microspectroscopy revealed statistically identical behavior, thereby providing a validation of infrared imaging for structural analysis of apatite forming tissues. © 1999 Society of Photo-Optical Instrumentation Engineers.

Keywords vibrational imaging; array detection; biomineralization; hydroxyapatite; collagen.

1 INTRODUCTION

Infrared (IR) spectroscopy in its various forms has been used since the 1960s to characterize the mineral in bone.¹⁻⁴ This phase was determined to be a poorly crystalline, carbonate-, and acid phosphate-containing phase of hydroxyapatite (HA). More recent applications of IR have centered around structural issues such as correlation of spectra with anion substitution sites and with crystallinity. The carbonate ν₂ frequency (850–890 cm⁻¹) has been shown to be sensitive to the site of the CO₃²⁻ substitution (OH⁻ vs PO₄³⁻) in the HA lattice.⁵,6 More recently, two groups of investigators have used Fourier transform infrared (FTIR) techniques to generate spectra-structure correlations between the ν₁, ν₃ phosphate contour (900–1200 cm⁻¹) of HA and the crystallinity/maturity/perfection of the mineral phase.⁷⁻⁹

A decade ago, to overcome the loss of spatial resolution necessitated by homogenization of samples for standard IR measurements, our laboratories undertook a collaborative effort to extend IR spectroscopy of mineralizing tissue into the microscopic regime by examination of normal and rachitic rat femurs.¹⁰ Following that report, FTIR microscopy has proven useful for characterizing spatial heterogeneity and for enumerating differences between normal and pathological samples.¹¹⁻¹⁵ In addition to monitoring site-to-site variation in mineral properties with a spatial resolution approaching the diffraction limit (~10–20 μm) a variety of other spectral parameters have been developed. The amount of organic matrix (primarily collagen) is determined from the intensity of the Amide I mode (1620–1680 cm⁻¹), while the extent of carbonate substitution is determined from the relative intensity of the aforementioned CO₃²⁻ ν₂ vibration.

The application of IR microscopy for the creation of images depicting changes in a particular spectral parameter across an inhomogeneous sample is both powerful and tedious. Acquisition of spectra as a function of spatial position requires an X-Y translation stage that systematically and progressively
moves the position of a sample in the beam. As an example, generation of IR data from a 400 μm × 400 μm section at 10 μm spatial resolution would require 1600 spectra at 2–8 min/spectrum, a prohibitive cost in time. Thus IR microscopy is usually conveniently carried out by sampling selected spatial regions and/or by working at lower spatial resolution.

The recent availability of IR focal-plane array detectors in the mid- or near-IR spectral regions coupled to IR microscopes offers potentially huge advantages for the study of tissues, and a limited number of preliminary demonstrations of the power of the method have already appeared. IR spectroscopy in general provides a fingerprint for many chemical functional groups within a sample. The measured spectral parameters (frequencies, intensities, halfwidths) reflect the environment and interactions of the molecules present. With IR focal plane array detection, each of these parameters may be imaged in a single measurement as full IR spectra are collected across a particular unapertured field in the tissue in one pass of the interferometer.

In terms of measurement time, array detectors provide a major advantage for IR microscopy. With the 64×64 array of mercury–cadmium–telluride (MCT) detectors placed at the image focal plane of the IR microscope, 4096 IR spectra are acquired during each pass of the interferometer. The images generated from particular spectral features may be used in a variety of applications. Relative amounts of particular chemical constituents may be mapped across a sample. Furthermore, if the vibrational parameters selected for mapping are sensitive to particular environments or interactions of a sample, then these structural parameters may be directly imaged.

As a prerequisite to the study of pathological states, it is necessary to demonstrate that the structural/diagnostic information contained in the images is consistent with more traditional IR microscopy, with other physical measurements, and with microanatomical expectations. In the current report, we examine the information currently available from this technology using human iliac crest biopsies.

2 EXPERIMENT

Sample preparation: Methacrylate embedded iliac crest biopsies obtained as part of routine diagnoses, were provided under an IRB approved protocol by the Pathology Department of the Hospital for Special Surgery. The tissues had been fixed in 70% ethanol, dehydrated through serial acetones, embedded in polymethylmethacrylate (PMMA), and cut into 5-μm-thick sections with a Jung K model microtome (Reichert-Jung, Heidelberg, Germany). The PMMA was removed after sectioning by soaking the sections in methyl acetate or acetone followed by washing with methanol. Sections were then transferred onto BaF2 windows, and covered with a second window to avoid local deformations or rippling, and mounted onto a fixed stage on the instrument.

IR measurements: Spectra were acquired with a BioRad (Cambridge, Mass.) “Sting-Ray”™ system. The instrument consists of an MCT focal plane array detector coupled to an IR microscope and a step-scan interferometer. Interferograms are simultaneously collected by an array of 64×64 detectors to provide 4096 spectra at a spectral resolution of 8 cm⁻¹. The size of sample area that is imaged onto a single pixel on the array is ~7 μm. As the spatial resolution cannot exceed the diffraction limit, the spatial resolution of the image created varies with wavelength and is different for the Amide I and phosphate ν1,ν3 contours. The instrumental software permits straightforward imaging of IR band areas. For imaging of area ratios [e.g., Figure 3(a)], in-house software was developed.

3 RESULTS

To facilitate the readers’ appreciation of the spectra and images that follow, a brief summary of bone structure and microanatomy is presented (for details, see Refs. 22 and 23). Long bones consist of a cylinder of cortical or compact bone surrounding an interconnecting meshwork of cancellous (trabecular) bone and marrow. Cortical bone consists of densely packed concentric layers of Haversian bone (osteons) surrounded by extra-osteonal bone matrix, and separated by “cement lines.” In the Haversian system of cortical bone, new bone layers form via deposition on the inside of the cavities (center of the osteons) created by resorption. Classical and recent descriptions of the sequence of events in osteons demonstrate that the center regions of the osteon (Haversian canal) is less well mineralized than the periphery. A visible microscopic image of an osteon is shown in Figure 1(a).

Figure 1(b) shows a typical mid IR spectrum of a highly mineralized region acquired with a conventional IR microscope. The spectrum was generated from a ~20 μm × 20 μm microscopic section of cortical bone from a human iliac crest biopsy. The spectral features of interest for diagnostic/imaging purposes are the protein Amide I (1620–1680 cm⁻¹) and II (1520–1570 cm⁻¹) bands arising from protein (mainly collagen) in the tissue and the phosphate ν1,ν3 contour (950–1200 cm⁻¹). We note that the carbonate ν2 mode (~870 cm⁻¹) lies just outside the range of the array detector. Also noted is the Amide III mode near 1240 cm⁻¹.

Figure 2(a) (see Color Plate) depicts a color scale image generated from the intensity of the integrated area of the IR phosphate ν1,ν3 contour of the HA. The osteon is somewhat elongated in this biopsy section. The axes are labeled with the row
and column numbers of the detector. The actual size of the field is $400 \times 600 \text{\,\mu m}$. The integrated intensity is color coded according to the scale just to the right of the image. As is evident from the image, there is an apparent gradient in mineral level, the lowest amount being in the center of the osteon, the highest at and beyond the leading edge. This result is qualitatively consistent with current models for the events in Haversian systems.24–26

Figure 2(b) (see Color Plate) depicts a color image generated from the intensity of the integrated area of the protein Amide I contour in the IR spectra. The integrated intensity of the contour is color-coded according to the scale just to the right of the image. The image roughly parallels that of the mineral phase, i.e., a strong spatial gradient progressing from low protein content at the osteonal center to relatively high levels at the periphery. A more detailed analysis shows the presence of protein around detector elements $x, y = 35, 35$ which show little mineral. This nonmineralized region is by definition the osteoid, and may reveal segments of...
Fig. 2 (a) IR color scale image of the spatial distribution of hydroxyapatite generated from the integrated intensities of the phosphate n_1, n_2 contour across the 64×64 array of MCT elements. The x and y axes are labeled with detector element numbers and correspond to $400 \mu m \times 400 \mu m$ spatial resolution ($7 \mu m \times 7 \mu m$ per pixel). The elliptical structure corresponds to a single osteon. The color coding used to generate the images is indicated on the scale to the right of the figure. (b) IR color scale image of the spatial distribution of protein generated from the integrated intensities of the Amide I mode contour across the 64×64 array of MCT elements. Axes and spatial resolution as in Fig. 2(a). The color coding used to generate the images is indicated on the scale to the right of the figure.

Fig. 3 (a) IR color image of the spatial variation of mineral crystallinity generated from the $I(1030)/I(1020)$ intensity ratio from the phosphate n_1, n_2 contour. X and Y axes are as in Fig. 2. The color coding used to generate the images is indicated on the scale to the right of the figure.
the extra-osteonal matrix that are not yet fully mineralized. Histochemical staining similarly reveals such nonmineralized areas around fully mineralized osteons, and they are believed to play significant roles in the mechanical properties of compact bone.

In addition to permitting the imaging of spatial variations of particular constituents in the sample, the IR spectrum permits the visualization of physicochemical characteristics of a particular component. For example, the broad phosphate \(\nu_1, \nu_3 \) contour consists of several overlapping, narrower, underlying bands. The underlying features of the contour most sensitive to changes in the crystal size of the HA are a pair of bands at 1030 and 1020 cm\(^{-1} \) (see Sec. 4). The intensity of the former increases as the crystal size increases; the intensity of the latter decreases at the crystal size decreases. A color image of the 1030/1020 peak height ratio from subbands in the contour is presented in Figure 3(a) (see Color Plate). Changes in the \(\nu_1, \nu_3 \) band shape when the mineral crystallinity is altered are demonstrated in Figure 3(b). Typical spectra from reasonably crystalline regions (60 \(\mu \)m from the osteonal center) and from more amorphous locations (10 \(\mu \)m from the osteonal center) are compared. Analysis of this contour has been carried out with a variety of conventional mathematical approaches as well as with infrared correlation [two-dimensional (2D)-IR] methods. Of the various features contributing to the contour, the analytical methods suggest that the ratio of the intensities of the peaks at \(\sim 1030 \) and 1020 cm\(^{-1} \) provides an index of crystallinity/maturity of the mineral phase. The basis for this correlation is described below in Figures 4 and 5.

The color image of the 1030/1020 peak height ratio presented in Figure 3(a) (color coded as shown with the scale to the right of the image) clearly shows that the crystallinity/maturity of the mineral increases from the center of the osteon to the periphery. Such a structural characterization of the mineral phase is not readily available from other physical approaches.

An important goal of the current work is to compare (as quantitatively as possible), the information obtained from point-by-point microscopic determination of various spectral parameters with that from the imaging. Previously, we have described a method for mapping the spatial distribution of IR parameters at a constant distance from the center of an osteon. The same osteon shown in Figures 2(a), 2(b), and 3(a) was examined with our conventional IR microscope equipped with a computer-controlled X-Y stage. The data were analyzed as discussed in Ref. 11, and are presented in Figure 4. The area ratios \(I_{1030}/I_{1020} \) determined from curve fitting the phosphate \(\nu_1, \nu_3 \) contours are plotted as a function of distance from the Haversian canal (osteon center). The distances have been scaled to allow for the ellipticity of the osteon. The monotonic relationship (arbitrarily selected to be linear for purposes of the analysis) between this spectral index and the distance from the osteonal center is characterized by statistical parameters (slope, correlation coefficient, standard deviation) listed in Table 1. Thirty-six of the spectra used to generate images at a variety of distances from the center of the same osteon were also analyzed as described above. The similarity of the data acquired by IR imaging to that generated from point-by-point microscopy data is striking, as revealed from the statistical parameters listed in Table 1. Also included in the Table are the statistical parameters for the variation of the mineral-to-matrix ratio from the center to the periphery of an osteon. The straight lines derived from the “traditional” and imaging approaches are statistically indistinguishable for both of spectral parameters, suggesting strongly that the information from the point-by-point mi-

![Fig. 3](https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/images/fig3.jpg)

Fig. 3 (b) IR spectra of the phosphate \(\nu_1, \nu_3 \) contour from relatively crystalline (60 \(\mu \)m from the osteonal center) regions and more amorphous (10 \(\mu \)m from the osteonal center) regions of bone.

![Fig. 4](https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/images/fig4.jpg)

Fig. 4 The “mineral crystallinity/maturity” index \((I_{1030}/I_{1020}) \) as a function of distance from the osteonal center as determined from the phosphate \(\nu_1, \nu_3 \) contour. Spectra were generated from conventional point-by-point microscopy.
4 DISCUSSION

The productive application of IR microscopic imaging as a biomedical tool can proceed at several levels of analysis. At the most rudimentary level, diagnosis of disease states simply requires a method for data reduction that produces consistent IR spectral differences between normal and pathological states in well defined control samples. The molecular interpretation of the differences, while of direct medical importance, is not required for diagnostic purposes. In fact, the mid-IR spectral region, with its much lower extinction coefficients and concomitant greater penetration depths, appears to be more appropriate and in fact has already been used in various medical applications.\(^{28,29}\)

A somewhat more elaborate strategy is required if molecular structure information is desired, as in the current application. For this purpose the near IR region is less suitable. The history of chemical infrared spectroscopy centers around spectra-structure correlations in the mid-IR; by comparison, spectra-structure correlations (and even assignments of spectral features) for near-IR spectra are quite incomplete.

In the current application, the progression from spectroscopy of homogenous materials (permitting determination of spectra-structure correlations) to IR imaging provides the basis needed for addressing issues at the microscopic level which are of importance in biomineralization. For the current samples, the intensity of the phosphate \(\nu_1, \nu_3\) contour ratioed to the intensity of the Amide I vibration (as discussed in Ref. 11) provides a measure of the extent of mineralization at the microscopic level. The same parameter in macroscopic samples can be directly correlated with a simple, physical measure of the same quantity (the so-called ash weight of the tissue).

A more important application of IR for evaluation of disease states and for evaluation of the results of therapeutic intervention lies in the sensitivity of the observed parameters to structural alterations. The 1030/1020 intensity ratio calculated from the phosphate \(\nu_1, \nu_3\) contour provides a useful demonstration. We have shown (Figure 5) that the 1030/1020 intensity ratio correlates with (among other things) \(c\)-axis crystallite size and perfection as deduced from x-ray diffraction line broadening measurements.\(^{11}\) Although it is tempting to suggest that this ratio quantitatively reflects only this aspect of crystal structure, in practice it is probable that this spectral parameter samples additional factors that

Table 1 Comparative statistical analysis of IR microscopy and IR imaging of spectral parameters.

<table>
<thead>
<tr>
<th>Parameter measured</th>
<th>IR microscopy</th>
<th>IR imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>st. dev.</td>
</tr>
<tr>
<td>Variation in mineral to matrix ratio from the osteonal center 98 to the periphery(^a)</td>
<td>0.027</td>
<td>0.007</td>
</tr>
<tr>
<td>Variation in the 1030/1020 index from the osteonal center to the periphery(^a)</td>
<td>0.023</td>
<td>0.003</td>
</tr>
</tbody>
</table>

\(^a\) These variations are analyzed assuming a linear change in moving from the center of the osteon to the periphery. The statistics reported are for the slopes, standard deviations, and correlation coefficients from the linear regression analysis.

croscopy is duplicated in the imaging experiment.

Finally, the connection between the parameters presented in Figure 4 and Table 1 and molecular level structural information is provided in Figure 5. The data in Figure 5, obtained for macroscopic samples, show the time evolution (top) of \(I / (1030)/(1020)\) as the HA crystals form, grow and ripen from a supersaturated calcium phosphate solution, while the bottom panel presents a correlation between the same crystallinity index and the C-axis dimension of the crystal. The latter was deduced from broadening of the 002 reflection in x-ray diffraction measurements, as discussed elsewhere.\(^{14,27}\) It is noted that in Figure 4 the 1030/1020 ratio was calculated from the relative areas of the two underlying bands whose positions were initially deduced through second derivative spectroscopy and curve fitting analysis.\(^{11}\) In the case of infrared imaging, this type of calculation is very time consuming since an image consists of 4096 individual spectra. To simplify and expedite the time of analysis, the intensity (peak height) ratios of the baseline-corrected phosphate peak at the two wavelengths of interest (1030 and 1020 cm\(^{-1}\)) provides a parameter encompassing the same type of information as the ratio of the areas of the same underlying bands. The peak height ratio is used to produce the image in Figure 3(a).
might affect crystallinity or maturity. Nevertheless, in all osteons examined thus far, this index has progressively increased from the center to the periphery. The latter was determined from the broadening of x-ray reflections.

The availability of array detection in the mid-IR evidently creates a paradigm shift from spectroscopy to imaging. Acquisition by point-by-point microscopy of a single image with the same spatial resolution as those obtained from imaging, would require many days of data acquisition. Examination of many samples or even the less daunting task of examining relatively small areas from one sample is thus unfeasible. This time constraint renders the point-by-point IR microscopy approach inefficient and probably impractical for a routine biomedical diagnostic.

In contrast, each image presented in this study required 3–5 min of data acquisition and a similar processing time. This time scale suggests that the approach is feasible for examination of medical specimens, which will in turn permit the rapid buildup of a database for diagnostic purposes. The volume of data places constraints on the type of spectral analysis that is feasible. For example, mathematical techniques which require careful operator examination of each spectrum (e.g., curve fitting, deconvolution) are probably inappropriate for handling array-generated data. In contrast, multivariate approaches will be very helpful for characterizing spectra from normal specimens and deviations therefrom.

Acknowledgments

We thank Prashant Bhandare and Bio-Rad Laboratories, Cambridge, Mass., for providing us with access to their Sting-Ray instrumentation. This work was supported by NIH Grant No. AR 41325 (to A.L.B. and R.M.).

REFERENCES

