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Abstract. We present an open source electric field tracking Monte Carlo program to model backscattering in
biological media containing birefringence, with computation of the coherent backscattering phenomenon as
an example. These simulations enable the modeling of tissue scattering as a statistically homogeneous continuous
randommedia under theWhittle-Matérn model, which includes the Henyey-Greenstein phase function as a special
case, or as a composition of discrete spherical scatterers under Mie theory. The calculation of the amplitude scatter-
ing matrix for the above two cases as well as the implementation of birefringence using the Jones N-matrix
formalism is presented. For ease of operator use and data processing, our simulation incorporates a graphical
user interface written in MATLAB to interact with the underlying C code. Additionally, an increase in computational
speed is achieved through implementation of message passing interface and the semi-analytical approach. Finally,
we provide demonstrations of the results of our simulation for purely scattering media and scattering media
containing linear birefringence. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.11.115001]
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1 Introduction
Diffuse reflectance measurements provide a method to noninva-
sively characterize the physical composition of biological tissue
with known sensitivities to the concentration of chromophores
(e.g., hemoglobin and melanin) as well as scattering structures
as small as tens of nanometers in size.1 Typically, models of dif-
fuse reflectance neglect the presence of birefringent materials
due to the assumption that their contribution to the measured
signal should be small. Yet, biological tissue contains a large
number of structures which exhibit either linear birefringence
due to structural alignment (e.g., lipid bilayers, collagen fibers,
and muscle fibers) or circular birefringence, also known as opti-
cal activity, due to the presence of chiral molecules (e.g., glucose
and certain amino acids). Because of the common presence of
such substances in biological tissue, it is plausible that in general
their effects should not be neglected. Wang et al. were the first to
model the effect of linear birefringence on the shape of the
spatial reflectance profile using Monte Carlo simulation.2

Their results demonstrate alterations occuring at subdiffusion
length-scales (i.e., source-detector separations less than a trans-
port mean free path l�s) due to the presence of linear birefrin-
gence. One easy-to-implement experimental technique that
enables the measurement of such changes is coherent backscat-
tering (CBS).3

CBS, also known as enhanced backscattering (EBS), is a
coherence phenomenon in which rays traveling time-reversed
paths constructively interfere to form an angular intensity
peak centered in the backscattering direction.4–7 The shape of
the CBS peak is related to the spatial reflectance profile through

Fourier transformation.3,8 Because of this relationship, CBS is
sensitive to the optical scattering, absorption, and polarization
properties that alter the spatial reflectance profile. Employing
these sensitivities, CBS has been used to study such objects as
fractal aggregates,9,10 amplifying random media,11 cold atoms,12

liquid crystals,13,14 and biological tissue15–17 to name a few.
For use in biomedical applications, CBS offers a noninvasive

tool to interrogate the optical properties of biological materials
at subdiffusion length-scales where information about the scat-
tering phase function is preserved.17 As such, CBS can be used
to quantify the absorption coefficient μa, the scattering
coefficient μs, the anisotropy factor g, as well as a second
shape parameter of the phase function D using a single spectral
measurement.17,18 Combining these sensitivities with the ability
to selectively interrogate different layers of tissue through
implementation of a partial spatial coherence source, CBS
has become a promising technique for the characterization
and detection of colorectal and pancreatic cancers.19,20

In order to accurately characterize a tissue sample using
CBS, it is necessary to understand the dependencies of the
peak shape on tissue structural composition. While various
analytical formalisms have been developed to describe the
CBS peak shape for different sample properties, each of
these calculations rely on simplifying assumptions (e.g., scalar
approximation21 or double scattering22) which cannot fully
describe the complex sensitivities of the CBS peak. As a
more rigorous but time-consuming alternative, polarized light
Monte Carlo simulations give results that are in experimental
agreement provided that a sufficient number of photon realiza-
tions are computed and the underlying model accurately
describes the medium under observation.3,8,17 Numerous
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Monte Carlo codes have been developed to simulate CBS in a
wide variety of different materials. Of particular importance for
this paper are CBS codes that have been developed to model and
calculate tissue optical properties,18,23,24 electric field tracking
codes,25,26 and codes that implement the semi-analytical
approach (also known as the partial photon technique).8,27,28

In this paper, we have developed a polarized light Monte
Carlo algorithm written in the C programming language that
tracks the progression of the electric field in scattering and
absorbing media containing birefringent materials. This code
enables the modeling of tissue as a statistically homogeneous
continuous random media under the Whittle-Matérn model or
as a composition of discrete spherical scatterers under Mie the-
ory. For ease of operator use and data processing, a graphical
user interface (GUI) written in MATLAB is used to interact
with the underlying C code. In addition, speed improving tech-
niques using message passing interface (MPI) for parallel com-
puting and the semi-analytical approach are employed.

The paper is organized as follows: In Sec. 2, we first provide
a summary of the theoretical origin of the CBS peak. We then
discuss the methodologies used to compute the coherent spatial
reflectance profile, including the computation of the amplitude
scattering matrix and Jones N-matrix for implementation of
birefringence. In Sec. 3, we describe the methods used in our
software to provide improved computational speed, accuracy,
and usability. Finally, in Sec. 4 we provide demonstrations of
results from our simulations first for purely scattering media
and second, for media containing both scattering and linear
birefringence.

2 Theory

2.1 Coherent Backscattering

Detailed discussion of the nature of the CBS phenomenon can
be found in a number of different publications.3–7,17 Briefly, the
experimentally measurable CBS peak shape ICBSðθx; θyÞ is the
Fourier transform of the product of four functions:

ICBSðθx; θyÞ ¼
ZZ

∞

−∞
pðxs; ysÞ · pcðxs; ysÞ · sðxs; ysÞ

· cðxs; ysÞeikðxs sin θxþys sin θyÞdxsdys; (1)

where function pðxs; ysÞ is the spatial impulse-response of mul-
tiply scattered light in the exact backscattering direction (i.e.,
antiparallel to the incident direction), function pcðxs; ysÞ is
the degree of phase correlation between the forward and reverse
path of all rays exiting at a particular ðxs; ysÞ separation, func-
tion sðxs; ysÞ is a modulation due to a finite illumination spot
size, and function cðxs; ysÞ is a modulation due to finite spatial
coherence of the illumination. Functions pðxs; ysÞ and sðxs; ysÞ
assume values between 0 and 1, while functions pcðxs; ysÞ and
cðxs; ysÞ assume values between −1 and 1. Note that in the
above notations, the subscript s indicates a relative separation
between any two points (i.e., xs ¼ x2 − x1).

Within the Fourier integral of Eq. (1), functions pðxs; ysÞ and
pcðxs; ysÞ represent sample dependent properties that we will
simulate numerically using electric field Monte Carlo while
functions sðxs; ysÞ and cðxs; ysÞ are instrumental properties
that can be found analytically as follows: Function sðxs; ysÞ
can be calculated as the normalized autocorrelation of the spatial
illumination intensity distribution Aðx; yÞ incident on the scat-
tering sample:3,17

sðxs; ysÞ ¼
RR∞
−∞ Aðx; yÞAðx − xs; y − ysÞdxdyRR

∞
−∞ A2ðx; yÞdxdy : (2)

Under the assumptions of the van Cittert-Zernike theorem,
function cðxs; ysÞ can be calculated as the normalized Fourier
transform of the angular intensity distribution Iðθx; θyÞ of
light incident on the scattering sample29:

cðxs; ysÞ ¼
R
∞
−∞ Iðθx; θyÞeikðxsθxþysθyÞdθxdθyR∞

−∞ Iðθx; θyÞdθxdθy
: (3)

Equations for functions sðxs; ysÞ and cðxs; ysÞ are presented here
for completeness. However, in the remainder of this paper we
will focus on the shapes of functions pðxs; ysÞ and pcðxs; ysÞ
which are calculated using our Monte Carlo code. Numerical
MATLAB calculation of functions sðxs; ysÞ and cðxs; ysÞ
using top-hat distributions for functions Aðx; yÞ and Iðθx; θyÞ,
respectively, are posted on our laboratory website.30

2.2 Numerical Calculation of Functions pðxs; ysÞ and
pcðxs; ysÞ with Monte Carlo

Electric field Monte Carlo simulations provide a numerical solu-
tion to the vector radiative transport equation in situations where
an analytical solution is either difficult or impossible to derive.
The basic structure of a light Monte Carlo code is well known.
In brief, photons are first injected into a material and allowed to
propagate according the material properties until the photon is
either absorbed or exits the medium. Along the way, the
polarization state of each photon is tracked and any number
of parameters characterizing light propagation (e.g., reflectance,
absorbance, time of flight, etc.) can be calculated.

For simulation of CBS, the interference between time-
reversed photon path-pairs must be considered. One way to rig-
orously treat this coherence property is using the Jones calculus
formalism to track the evolution of the electric field as it encoun-
ters optical components (e.g., polarizers), refractive index
contrasts that induce scattering, and birefringent materials.31

In our simulations, which use a heavily modified version of
the Stokes vector meridian plane Monte Carlo code written
by Ramella-Roman et al.,32 the electric field undergoes four
linear transformations for each scattering event:

�E 0
k

E 0
⊥

�
¼
�
cos γ sin γ

−sin γ cos γ

��
m1 m4

m3 m2

�

×
�
S2ðθ;ϕÞ S3ðθ;ϕÞ
S4ðθ;ϕÞ S1ðθ;ϕÞ

��
cos ϕ −sin ϕ

sin ϕ cos ϕ

��
Ek
E⊥

�
; (4)

Ẽ 0 ¼ Rð−γÞMSðθ;ϕÞRðϕÞẼ; (5)

where RðϕÞ is a rotation from the meridian plane into the scat-
tering plane, Sðθ;ϕÞ is the amplitude scattering matrix,M is the
transformation due to propagation through birefringent media,
and RðγÞ is a rotation from the scattering plane back into the
meridian plane. Note that the notation for the elements of
matrices Sðθ;ϕÞ and M follow the conventions of van de
Hulst33 and Jones,34 respectively. Computation of the matrix
elements of Sðθ;ϕÞ and M will be discussed in the following
two subsections.

Journal of Biomedical Optics 115001-2 November 2012 • Vol. 17(11)

Radosevich et al.: Open source software for electric field Monte Carlo simulation of coherent . . .



For a multiple scattering sample, the transformations in
Eq. (5) accumulate for each scattering event until the light
escapes from the medium:

Ẽ 0 ¼ Rnð−γÞMnSnðθ;ϕÞRnðϕÞ · ·

· R1ð−γÞM1S1ðθ;ϕÞR1ðϕÞM0Ẽ;

¼ M̄ Ẽ;

(6)

where the subscript in Eq. (6) indicates the numbers of scattering
events and M̄ is the effective complex scattering matrix for a ray
scattered n times. Each matrix element of M̄ can assume an
infinite number of different complex values depending on the
sample composition, geometry, and photon visitation history.

Generalizing the matrix M̄ for the forward propagating path
(denoted with subscript ⊙) we can write:

M̄⊙ ¼
�
ar þ iai br þ ibi
cr þ ici dr þ idi

�
; (7)

where a, b, c, and d are arbitrary variables with subscripts
indicating the real ðrÞ and imaginary parts ðiÞ of each term.
In simulations of CBS, it is necessary to find both the forward
propagating and reverse propagating (denoted with subscript⊗)
matrices in order to accurately calculate the degree of interfer-
ence between the two rays. Fortunately, once we have calculated
M̄⊙, M̄⊗ can be found trivially according to the reciprocity
theorem as:25

M̄⊗ ¼
�
ar þ iai −cr − ici
−br − ibi dr þ idi

�
: (8)

After M̄⊙ and M̄⊗ have been calculated, the electric fields exit-
ing the medium for the forward and reverse paths can be found
by multiplying the matrix M̄ by the Jones matrix for the incident
polarizer, Pincident.

Ẽ⊙ ¼ M̄⊙PincidentẼ; Ẽ⊗ ¼ M̄⊗PincidentẼ: (9)

In order to calculate function pðxs; ysÞ, we first convert Ẽ⊙ into
observable intensities specified by the Stokes parameters:35

I ¼ EkE�
k þ E⊥E�

⊥; Q ¼ EkE�
k − E⊥E�

⊥;

U ¼ EkE�
⊥ þ E⊥E�

k; V ¼ iðEkE�
⊥ − E⊥E�

kÞ: (10)

The unnormalized function pðxs; ysÞ can then be found for
various polarization channels by incoherently summing the
appropriate combination of Stokes parameters for the forward
propagating path over all multiply scattered photon realizations
exiting in the exact backscattering direction. In our simulations,
we calculate function pðxs; ysÞ for four different polarization
channels: linear co-polarized xx, linear cross-polarized xy,
helicity preserving þþ, and orthogonal helicity þ−. These
can be found as:

pxxðxs; ysÞ ¼
X
n

W · ½1þQðxs; ysÞ∕Iðxs; ysÞ�;

pxyðxs; ysÞ ¼
X
n

W · ½1 −Qðxs; ysÞ∕Iðxs; ysÞ�;

pþþðxs; ysÞ ¼
X
n

W · ½1þ Vðxs; ysÞ∕Iðxs; ysÞ�;

pþ−ðxs; ysÞ ¼
X
n

W · ½1 − Vðxs; ysÞ∕Iðxs; ysÞ�; (11)

whereW is the photon weight and n is the number of photons. In
addition to scoring the intensities in Cartesian coordinates, we
also score the intensities as pðrs; zÞ where rs is the exit radius
and z is the maximum penetration depth. Mathematically,
these grids are related by pðrs; zÞ ¼ ∫ 2π

0 pðx ¼ rs cos ϕ; y ¼
rs sin ϕ; zÞdϕ.

In order to maintain conservation of energy, we score all
photons that exit outside of our grid or are single scattered in
the peripheral pixels of each grid. In this paper, we normalize
function pðxs; ysÞ such that the integral over all spatial coordi-
nates plus the single scattered intensity for unpolarized light
equals 1:

ZZ
∞

−∞
pooðxs; ysÞdxsdys þ SSoo ¼ 1; (12)

where the subscript oo indicates unpolarized illumination
and collection and SS is the single scattered intensity. In
terms of the component polarizations, we can calculate the
unpolarized case by summing the four components: poo ¼
pxx þ pyy þ pxy þ pyx ¼ pþþ þ p−− þ pþ− þ p−þ.

Since CBS is a coherence phenomenon, it is required that
both the polarization and phase of the time-reversed photon
path-pairs are the same in order for interference to occur. As
a result, function pðxs; ysÞ is never independently measurable
using CBS and instead can only be measured as the product
of pðxs; ysÞ · pcðxs; ysÞ. One caveat of this statement is that
for the polarization preserving channels (e.g., xx and þþ),
the reciprocity theorem requires that the forward and reverse
propagating paths exit with the same accumulated phase and
pcðxs; ysÞ ¼ 1. For the polarization nonpreserving channels
(e.g., xy and þ−) the degree of coherence DOC for a single
time-reversed path-pair is found as:8

DOC ¼ 2R½E⊙ðxs; ysÞE�
⊗ðxs; ysÞ�

jE⊙ðxs; ysÞj2 þ jE⊗ðxs; ysÞj2
: (13)

The product of functions pðxs; ysÞ · pcðxs; ysÞ for the orthogo-
nal polarization channels is then found as:

pxyðxs; ysÞ · pcxyðxs; ysÞ ¼
X
n

W · DOCxy

· ½1 −Qðxs; ysÞ∕Iðxs; ysÞ�;
pþ−ðxs; ysÞ · pcþ−ðxs; ysÞ ¼

X
n

W · DOCþ−

· ½1 − Vðxs; ysÞ∕Iðxs; ysÞ�: (14)

2.3 Computation of the Amplitude Scattering
Matrix Sðθ;ϕÞ and Phase Function Pðθ;ϕÞ

The amplitude scattering matrix Sðθ;ϕÞ in Eq. (5) succinctly
summarizes the effects that a single scattering event has on
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the transformation of the incident electric field. For an arbitrary
scattering media, each of the four matrix elements is indepen-
dent of the others and are a function of both the polar angle θ and
the azimuthal angle ϕ. However, a number of simplifications to
the elements of SðθÞ can be made through knowledge about the
geometry and composition of the scattering material. In media
composed of spherically symmetrical scatterers (e.g., spheres or
statistically homogeneous random media), the matrix elements
S3 and S4 are identically equal to zero and the matrix elements
S1 and S2 are solely functions33 of θ. In this paper, we imple-
ment two spherically symmetrical models for the composition of
the scattering material: first, discrete spheres and second, statis-
tically homogeneous continuous random media with refractive

index distributions specified by the Whittle-Matérn family of
correlation functions.1,17,24,36,37

2.3.1 Discrete spheres—Mie theory

For a scattering media composed of discrete spherical particles,
the matrix elements S1ðθÞ and S2ðθÞ can easily be calculated
numerically according to Mie theory.33 In our simulation, we
implemented a vectorized version of the Mie code written by
Mätzler following the formalism put forth by Bohren and Huff-
man.35,38 Once the scattering amplitudes are calculated, the
shape of the phase function Pðθ;ϕÞ can be determined as:

Pðθ;ϕÞ ¼ S11ðθÞ · Io þ S12ðθÞ · ðQo cos 2ϕþ Uo sin 2ϕÞR
2π
0

R
π
0 ½S11ðθÞ · Io þ S12ðθÞ · ðQo cos 2ϕþ Uo sin 2ϕÞ� sin θdθdϕ

; (15)

where [Io, Qo, Uo, Vo] are the Stokes parameters for inci-
dent illumination and S11ðθÞ and S12ðθÞ are elements of
the Mueller scattering matrix:35

S11ðθÞ ¼
jS2ðθÞj2 þ jS1ðθÞj2

2
; S12ðθÞ ¼

jS2ðθÞj2 − jS1ðθÞj2
2

:

(16)

2.3.2 Continuous random media—Born approximation

The Born approximation, also known as Rayleigh-Gans-Debye
theory, provides a simplification to scattering theory which
enables solutions for otherwise intractable problems (e.g., scatter-
ing in continuous random media). Provided that the fluctuations
in refractive index are sufficiently weak such that the phase shift
of the incident wave is small, we can approximate the total field
within the scattering medium as the incident field. The scattered
field can then be computed as the coherent summation of the
dipole scattering pattern from each position within the medium.
In the following paragraphs, we begin by describing the calcula-
tion of the scattering amplitude matrix under the Born approxi-
mation. We then apply these calculations to computation of
scattering for a continuous randommedia defined under theWhit-
tle-Matérn model.

The scattering amplitude matrix for an infinitesimal dipole
can be found as:33,35

dSðθÞ ¼ −ik3 · dα ·

�
cos θ 0

0 1

�
; (17)

where dα is the differential polarizability and k is the wavenumber.
For weak refractive index contrast dα, can be approximated as:

dα ≈
nΔ
2π

dV; (18)

where nΔ is the excess refractive index within the differential
volume dV relative to the mean medium refractive index
½ðndV∕hnmediumiÞ − 1�. To find the total scattered field for the
ensemble scattering medium, we coherently sum the contribution
from each dipole over the entire volume:

SðθÞ ¼ −ik3 ·
Z
V

nΔð~rÞ
2π

ei~ks ·~rdV ·

�
cos θ 0

0 1

�
; (19)

where j~ksj ≡ 2j~kj sin θ
2
. The term ei~ks ·~r accounts for the relative

phase difference of the field originating from different positions
within the medium and observed in the direction ~ks. Upon inspec-
tion, we see that the integral in Eq. (19) is essentially the three
dimensional Fourier transform of nΔð~rÞ.

For continuous random media, there is no elementary scat-
tering particle with decipherable boundaries. As such, scattering
must be defined in terms of the amplitude scattering matrix per
unit volume polarizability sðθÞ:

sðθÞ ¼ −ik3 · fðksÞ ·
�
cos θ 0

0 1

�
; (20)

where function f is the scattering form factor of the particular
scatterer under investigation. Assuming spherical symmetry for
the scattering medium, function f can be calculated through
reduction of the three dimensional Fourier transform in Eq. (19):

fðksÞ ¼
2

α

Z
∞

0

MnðrÞ
r sinðksrÞ

ks
dr; (21)

α ¼ 2

Z
∞

0

r2MnðrÞdr; (22)

where the statistical functionMnðrÞ is the particulate equivalent
medium and replaces nΔð~rÞ in Eq. 19. Conceptually, MnðrÞ can
be thought of as the effective particle which gives the same scat-
tered intensity as the random process described by nΔð~rÞ [see
Fig. 1(a)]. Note that MnðrÞ uses the scalar r (implying spherical
symmetry), while nΔð~rÞ uses the vectorial ~r (implying lack of
symmetry).

One attractive model forMnðrÞ in a continuous random scat-
tering medium originates from the Whittle-Matérn family of
correlation functions.37 Under this model, the distribution of
refractive index fluctuations is defined through the medium’s
refractive index correlation function BnðrsÞ:

BnðrsÞ ¼ An

�
rs
lc

�D−3
2

KD−3
2

�
rs
lc

�
; (23)

where Kν is the modified Bessel function of the second kind
with order ν, lc describes the length-scale of tissue heterogene-
ity, An is the fluctuation strength, and D is a parameter which
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determines the shape of the distribution (e.g., Gaussian,
stretched exponential, exponential, and power law distribu-
tions).37 Implementation of the Whittle-Matérn model provides
the flexibility to mimic the distributions of refractive index
expected for a wide range of different biological tissue
types.18,24,37 It should be noted that whenD ¼ 3, this model pre-
dicts a scattering phase function that is identical to the com-
monly used Henyey-Greenstein case. Figure 1(a) shows a
single realization of the three dimensional excess refractive
index distribution for D ¼ 3.

According to the convolution theorem, the random process
nΔð~rÞ is related to BnðrsÞ and MnðrÞ by:

BnðrsÞ ¼ F−1½jF ½nΔð~rÞ�j2� ¼ F−1½jF ½MnðrÞ�j2�; (24)

where the symbol F indicates the Fourier transform operation.
Inverting Eq. (24), we can derive MnðrÞ:

MnðrÞ ¼
2

ffiffiffi
24

p
π3∕4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AnΓðD∕2Þp

ΓðD∕4Þl3∕2c

�
r
lc

�D−6
4

KD−6
4

�
r
lc

�
: (25)

It should be noted that MnðrÞ is a statistical function that pro-
vides the same information as BnðrsÞ but allows for the calcula-
tion of the scattered electric field needed for electric field Monte
Carlo. One caveat of the previous statement is that the phase
information is not represented and so we can only correctly
calculate the modulus of function f. Still, the shape of the scat-
tering phase function which is proportional to the square of
function jfj is unaffected by this distinction. Performing the
integrations in Eqs. (21) and (22), under the Whittle-Matérn
model function jfj can be found as:

jfðksÞj ¼ ð1þ k2s l2cÞ−D∕4: (26)

Equation (26) is an accurate estimate of scattering pro-
vided σ2nðklcÞ2 ≪ 1.39

Figure 1 provides a numerical validation of our treatment of
scattering using function MnðrÞ. Figure 1(a) shows a three
dimensional random medium generated using a publicly
available code for D ¼ 30.40 Using this medium, we calculated
function jfj by numerically computing the modulus of the three-
dimensional (3-D) Fourier transform in Eq. (19), rotationally

averaging the resulting function, and finally normalizing by
the first point. Figure 1(b) shows a close match between this
numerically calculated function and the analytical result
from Eq. (26).

2.4 Computation of the Jones M-Matrix for
Implementation of Birefringence

A number of biological tissues exhibit some combination of lin-
ear birefringence due to structural alignment and optical activity
due to the presence of chiral molecules. Since the matrix trans-
formations of the electric field are noncommutative, the order in
which these effects are applied can potentially alter the obser-
vable signal.41 In this paper, we assume a stochastic medium in
which there is no preferential order for the effects of linear
birefringence and optical activity. In order to combine these
two effects into a single matrix operation, the Jones N-matrix
formalism can be utilized.34

The JonesN-matrix represents the transformation of the elec-
tric field for an infinitesimally small propagation path length ds.
Following the derivation by Jones, this enables the combination
of multiple polarization-altering effects (e.g., birefringence and
dichroism) into a single M-matrix which represents a transfor-
mation over the entire path length. The N-matrix for a specimen
containing both linear birefringence and optical activity can be
written as41:

N ¼
�
dM
ds

�
M−1 ¼

�
n1 n4
n3 n2

�
¼

�
i · g0 −ω
ω −i · g0

�
; (27)

where the elements �i · g0 represent changes in the phase
between the two orthogonal linear polarization states that occurs
due to linear birefringence and the elements �ω represent rota-
tions of polarization state due to optical activity.

The parameter g0 can be found as:34

g0 ¼
π

λ
ΔnbðθbÞ; (28)

where λ is the wavelength of light within the medium and Δnb is
dependent on the ordinary refractive index no, the extraordinary
refractive index ne, and the angle between the photon trajectory
and the optic axis θb:

Fig. 1 Numerical validation of our treatment of scattering using functionMnðrÞ. (a) Randomly generated 3-D medium under the Whittle-Matérn model
for D ¼ 3. (b) Comparison of function jf j calculated numerically and analytically for the medium shown in panel a.
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ΔnbðθbÞ ¼
noneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2e cos2 θb þ n2o sin2 θb
p − no: (29)

The photon trajectory is defined by the direction cosine êprop and
the optic axis41 by the “birefringence unit vector” b. In order to
describe a particular media’s material property (which must be
independent of θb), we will refer to its value of Δnb;max ¼
Δnbðπ∕2Þ ¼ ne − no.

The parameter ω can be found as the product of the chiral
molecule’s specific rotation ½α�Tλ at temperature T (degrees
Celsius) and its concentration ρ:

ω ¼ ½α�Tλ · ρ: (30)

Both g0 and ω are calculated in units of radians per centimeter.
The M-matrix elements corresponding to the convention in

Eq. (4) can be calculated for a given path length s as:

m1 ¼ i · g0
sinhðQN · sÞ

QN
þ coshðQN · sÞ;

m2 ¼ −i · g0
sinhðQN · sÞ

QN
þ coshðQN · sÞ;

m3 ¼ ω
sinhðQN · sÞ

QN
;

m4 ¼ −ω
sinhðQN · sÞ

QN
; (31)

where QN is found as:

QN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g20 − ω2

q
: (32)

As defined in Eq. (31), the M-matrix elements must first be
rotated by an angle β to a reference frame in which the parallel
component of the electric field êk is aligned with the maximum
refractive index difference b 0 before application to Eq. (4).
Wood et al. provide a nice discussion and schematic of the
steps involved in this rotation.41 Mathematically, the vector
b 0 can be found as b 0 ¼ êprop × ðb × êpropÞ. The angle β can
then be found by vector multiplication between êk and b 0.
The properly rotated M-matrix is then found as:

M ¼
�
cosðβÞ − sinðβÞ
sinðβÞ cosðβÞ

��
m1 m4

m3 m2

��
cosðβÞ sinðβÞ
− sinðβÞ cosðβÞ

�
:

(33)

3 Materials and Methods
The general details of meridian plane Monte Carlo simulations
as well as an open source code are discussed in the publication
by Ramella-Roman et al.32 Here, we implement a heavily mod-
ified version of this code to model a pencil beam normally inci-
dent on a nonabsorbing semi-infinite medium with refractive
index matching at the boundary. The rationale for assuming
index matching at the boundary is the excellent agreement
between such a code and experimental measurements.3,17 The
collection geometry to model pðxs; ysÞ is a square grid with
x and y resolution of ∼0.01 · μ�s and extent ranging from −5 ·
μ�s to 5 · μ�s in both x and y. Additionally, pðrs; zÞ is recorded as
a square grid with rs and z resolution of ∼0.01 · μ�s and extent
ranging from 0 to 5 · μ�s in both rs and z. As a reminder, both

pðxs; ysÞ and pðrs; zÞ record only photons that exit the
medium exactly in the direction of the surface unit normal vector
(i.e., antiparallel to the incident pencil beam with numeri-
cal aperture ¼ 0).

In addition to the theoretical formalisms for scattering in con-
tinuous random media and propagation in birefringent materials
discussed in Sec. 2, we have implemented three major speed and
usability improvements to our Monte Carlo code. These include
the implementation of, first, the semi-analytical approach, sec-
ond, a message passing interface (MPI), and third, a graphical
user interface (GUI) written in MATLAB.

3.1 Semi-Analytical Approach

In order to accurately model CBS, functionpðxs; ysÞmust be cal-
culated for reflected light that is antiparallel to the incident direc-
tion. However, under the traditional Monte Carlo approach, only
an infinitesimally small number of photonswill exit the scattering
medium exactly in this direction. As a result, in order to achieve
any computational efficiency, it is necessary to collect all photons
that exit the medium within some finite collection angle around
the backscattering direction. Unfortunately, this generates a
trade-off between computational accuracy and efficiency since
the spatial distribution of light reflected at different angles is
not constant. As a compromise, previous publications have
found that collection of photons exiting the medium within an
angle of 10 degrees around the backscattering direction produce
no noticeable deviations from the theoretical shape of function
pðxs; ysÞ.18,23 Still, under the traditional approach only a
relatively small number of the total photons contribute to the
final result.

In order to improve the computational efficiency of the tradi-
tional approach to Monte Carlo simulations, we implement the
semi-analytical approach (also known as the partial photon tech-
nique).8,27,28,42,43 Using this method, a portion of scattered inten-
sity is collected after a photon reaches each new position within
the medium. This “partial photon” intensity Ipartial is calculated
by multiplying the probability that the photon is scattered in the
direction of the surface Fðθs; 0Þ by the probability that it will
reach surface according to the Beer-Lambert law e−ðμsþμaÞz:

Ipartial ¼ Fðθs; 0Þ · e−ðμsþμaÞz; (34)

where θs is the angle between êprop and the surface normal
vector and z is the distance to the surface. Modifying
Eq. (11) under the semi-analytical approach, we find function
pðxs; ysÞ for different the different polarization channels as:

pxxðxs; ysÞ ¼
X
n

Ipartial · W · ½1þQðxs; ysÞ∕Iðxs; ysÞ�;

pxyðxs; ysÞ ¼
X
n

Ipartial · W · ½1 −Qðxs; ysÞ∕Iðxs; ysÞ�;

pþþðxs; ysÞ ¼
X
n

Ipartial · W · ½1þ Vðxs; ysÞ∕Iðxs; ysÞ�;

pþ−ðxs; ysÞ ¼
X
n

Ipartial · W · ½1 − Vðxs; ysÞ∕Iðxs; ysÞ�; (35)

where the index of summation n now represents the number of
scattering events. The product of functions pðxs; ysÞ · pcðxs; ysÞ
for the orthogonal polarization channels can be found in analogy
with Eq. (36) as:
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pxyðxs; ysÞ · pcxyðxs; ysÞ ¼
X
n

Ipartial · W · DOCxy

· ½1 −Qðxs; ysÞ∕Iðxs; ysÞ�;
pþ−ðxs; ysÞ · pcþ−ðxs; ysÞ ¼

X
n

Ipartial · W · DOCþ−

· ½1 − Vðxs; ysÞ∕Iðxs; ysÞ�:
(36)

Scoring photons in this way enables both computational effi-
ciency through collection of information at each scattering
event and accuracy through collection of intensity in the
exact backscattering direction.

Figure 2 shows a visual comparison of the noise level
between the semi-analytical (panel a) and traditional (panel
b) technique in a Rayleigh scattering sample simulated for
the xx polarization channel. Figure 2(c) compares the pxxðrs ·
μ�sÞ and pxxðz · μ�sÞ distributions achieved by summing pxxðrs ·
μ�s ; z · μ�sÞ over rows and columns, respectively. Note that since
pðrs; zÞ scales linearly with the reduced scattering coefficient
μ�s ¼ 1∕l�s , we show each distribution as a function of the dimen-
sionless parameters rs · μ�s and z · μ�s . Quantitative comparison
of the computational efficiency between the two techniques is
shown in Fig. 2(d) and calculated by taking the ratio of the num-
ber of traditional photons over the number of semi-analytical
photons needed to achieve the same simulation noise level.
For isotropic scattering (i.e., g ¼ 0), the semi-analytical

approach is an exceptional 200 times faster than the traditional
approach. The efficiency of the semi-analytical approach
decreases for increasing anisotropy factor, but remains superior
for values of g < 0.96 (which encompasses the majority of tissue
types44). In order to ensure optimal efficiency for each simula-
tion, our code scores photons using both the traditional and
semi-analytical technique.

3.2 MPI Implementation

One of the computational benefits of performing Monte Carlo
simulations is that the noise level scales inversely with the num-
ber of recorded photons. Due to the stochastic nature of the
Monte Carlo method, information from each photon is indepen-
dent and calculations from an indeterminate number of proces-
sors can be linearly combined to reduce the noise variance. In
order to take advantage of this capability, we have implemented
MPI into our simulations. This allows multiple processors to
independently calculate a predetermined number of photon his-
tories, and subsequently combine the results after each processor
has finished. A simulation of Rayleigh scattering for 108

photons on a dual quadcore workstation (2.1 GHz AMD
Opteron Processor 2352) can be run in less than 1.5 h.

3.3 MATLAB GUI

Within the engineering community, MATLAB is the preferred
platform on which to analyze data. However, to perform highly
repetitive calculations in the minimum amount of time, the C
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Fig. 2 Comparison between the semi-analytical and traditional Monte Carlo method in a sample of Rayleigh scatterers simulated for the xx polarization
channel. Function pxxðrs · μ�s ; z · μ�s Þ for (a) the semi-analytical method and (b) the traditional method. (c) Functions pxxðrs · μ�s Þ and pxxðzs · μ�s Þ achieved
by summing pxxðrs · μ�s ; z · μ�s Þ over rows and columns, respectively. The symbols indicate the traditional technique while the solid line indicates the
semi-analytical approach. (d) Computational efficiency measured by taking the ratio of the number of traditional photons over the number of semi-
analytical photons needed to achieve the same simulation noise level. These simulations utilize the Whittle-Matérn model with D ¼ 3.
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programming language is advantageous. In order to combine the
usability of MATLAB and speed of C code, we have implemen-
ted a software program that integrates these two
environments. User interaction with the simulation is carried
out through the MATLAB GUI shown in Fig. 3. After specify-
ing the desired parameters, a simulation can be imported into a C
code environment for rapid calculation of functions pðxs; ysÞ
and pcðxs; ysÞ on multiple processors with a single button
click. After the simulation is completed, all relevant data is auto-
matically compiled and saved into a single MATLAB format file
under a user specified file name.

The MATLAB GUI consists of three main panels used to
specify the relevant simulation parameters. The panel in
Fig. 3(a) allows the user to specify the general Monte Carlo
parameters such as illumination polarization, photon and
processor numbers, optical coefficients μ�s and μa, as well as
grid size and discretization. The panel in Fig. 3(b) enables simu-
lations to be carried out using either a discrete sphere model
under Mie Theory or a continuous distribution of refractive
index under the Whittle-Matérn model as described in Sec. 2.3.
The panel in Fig. 3(c) allows the user to set birefringence para-
meters such as the ordinary and extraordinary refractive index, the
optical rotation, and the birefringence unit vector. Additionally,
the GUI provides the capability to plot a summary of the simula-
tion data as well as export data to and compile data from a remote
computer cluster. Further specific details on the operation of the
GUI can be found in a user manual posted along with our code.30

4 Results and Discussion
In this section, we provide demonstrations of the results of our
simulation first for purely scattering samples and then for scat-
tering samples containing linear birefringence. These results are
presented in spatial coordinates rather than the conventional way
of displaying CBS data in angular coordinates. The rationale for
presentation in this way is that we believe understanding light
transport in terms of spatial coordinates is more intuitive than in
angular coordinates. Although CBS measurements must be
acquired in angular coordinates, according to Eq. (1) a simple
inverse Fourier transform of these results provides easily

interpretable information about how light is transported through
biological tissue.3 Additionally, we would like to stress the
comparison between CBS and conventional diffuse reflectance
measured in the exact backscattering direction.

4.1 Trends for Purely Scattering Samples

For any particle form factor (spheres, continuous random media,
etc.), the shape of the differential scattering cross-section con-
verges to that of Rayleigh scattering when the characteristic
length-scale of the particle is much smaller than the wavelength
of illumination. Because of this common thread between all
scattering form factors, we begin by analyzing the shape of
the CBS peak for Rayleigh scattering.

One way to quantify the shape of the CBS peak is through the
enhancement factor E or the relative height of the peak at θ ¼ 0
divided by the total unpolarized incoherent intensity. Mathema-
tically, this can be found as:

Eν ¼
Z

∞

0

pνðrsÞ · pcνðrsÞdðrsÞ; (37)

where the subscript ν indicates the specific polarization channel
under analysis (e.g., xx, xy, etc.). Note that the value calculated
in Eq. (37) is for plane wave illumination with infinite spatial
coherence length (i.e., cðrsÞ ¼ sðrsÞ ¼ 1).

Table 1 contains a summary of the values of E in the various
polarization channels for nonabsorbing Rayleigh scatterers with
index matching at the boundary and results rounded to the fourth
decimal place. Comparison with the benchmark values calcu-
lated by Mishchenko as well as Amic et al. using two separate
numerical techniques show errors below 2% in each case.45,46

Additionally, the value of Exx is in agreement with a Monte
Carlo code which takes an alternative semi-analytic approach.47

We note that the values given in Refs. 45 and 46 are converted
into the normalization used in this paper before display in
Table 1.

In the idealized scalar case E would be exactly equal to 1,
meaning that the coherent intensity is the same magnitude as
the incoherent intensity. However, for real electromagnetic
waves Eoo is less than 1 due to first, single scattering and sec-
ond, partially reversible photon paths (i.e., paths in which
DOC ≠ 1). For the xx andþþ polarization preserving channels,
function pcðrsÞ is identically equal to 1. Because of this, Exx
and Eþþ are nearly one quarter of the total unpolarized incoher-
ent intensity. For the xy and þ− orthogonal polarization

Fig. 3 MATLAB GUI for performing Monte Carlo simulations of CBS.
(a) Specification of the generalMonte Carlo parameters. (b) Specification
of scattering model to be implemented. (c) Specification of the birefrin-
gence properties of the sample.

Table 1 Values of E in various polarization channels for nonabsorbing
Rayleigh scatterers with index matching at the boundary. The values
given for Refs. 45 and 46 are converted into the normalization used
in this paper before display.

Mishchenko45,46 Our simulation % Error

Eoo 0.5368 0.5374 0.1094

Exx 0.2479 0.2479 −0.0344

Eþþ 0.1908 0.1896 −0.6145

Exy 0.0205 0.0208 1.8512

Eþ− 0.0776 0.0791 1.9029
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channels, Exx and Eþþ are greatly reduced due to the decay of
function pc at large values of rs.

As the characteristic length-scale of the particle approaches
the wavelength of illumination, the specific scattering form fac-
tor begins to dominate the shape of the differential scattering
cross-section. Under Mie theory, the characteristic length-
scale is the radius of the spherical particle, a. Figure 4 shows
E as a function of the dimensionless size parameter ka.
Figure 4(a) shows these trends for a scattering medium with
a relative refractive index m ¼ nsphere∕nmedium corresponding
to polystyrene microspheres suspended in water. For very
small ka, the results converge to the values of Rayleigh scatter-
ing given in Table 1. As ka increases, the trends in each polar-
ization channel exhibit an oscillatory pattern due to the spherical
form factor. Interestingly, the trends shown in Fig. 4(a) remain
essentially the same with the reduced refractive index contrast
shown in Fig. 4(b) and 4(c). From these results it can be con-
cluded that refraction of the light wave within the scattering par-
ticle has a smaller effect on the shape of the CBS peak than the
underlying spherical particle scattering form factor.

Under the Whittle-Matérn model, the characteristic length-
scale is the parameter lc. Figure 5 shows E as a function of
the dimensionless parameter klc for various values ofD. Similar
to the Mie theory results above, for very small klc the values
converge to those of Rayleigh scattering. For larger values of
klc, E exhibits a smooth change trend due to the smoothly
decaying form factor underlying scattering in the Whittle-
Matérn model.

4.2 Effects of Birefringence

To demonstrate the general effects of biological birefringence on
the shape of the CBS peak, we once again turn to the case of

Rayleigh scattering. To study these effects within the biologi-
cally relevant regime,48 we performed simulations for values
of Δnb;max ranging from 0 to 1 × 10−3 with a birefringence
unit vector oriented along the x-axis (i.e., b ¼ ½1; 0; 0�).

Figure 6 demonstrates the effects of linear birefringence on
the spatial reflectance profiles for linear polarized illumination
and collection with the arrows indicating increasing values of
Δnb;max. Noting that pcxx ¼ 1 for all length-scales, Fig. 6(a)
demonstrates that the pxx and pxy distributions which would
be measured using conventional incoherent techniques exhibit
minimal sensitivity to the presence of birefringence. However,
a noteworthy change in the coherent pxy · pcxy distribution
(measurable using CBS) occurs even for small values of
Δnb;max. The explanation for this observation is that the pre-
sence of birefringence reduces the reversibility of the path tra-
velled by each multiply scattered photon, resulting in a more
sharply decaying function pcxy shown in Fig. 6(b). Mathema-
tically, the additional polarization rotations imparted by the pre-
sence of birefringence reduce the symmetry of the effective
complex scattering matrix M̄⊙ and therefore cause the forward
and reverse propagating rays to be less correlated with each
other on average.

Figure 7 shows the effects of birefringence on the spatial
reflectance profiles for circularly polarized illumination and col-
lection with increasing Δnb;max. Similar to the effect described
for linear polarization, function pcþ− shown in Fig. 7(b) is more
strongly decaying for large values of Δnb;max. This results in a
strong attenuation of function pþ− · pcþ− relative to function
pþ− at large length-scales. Interestingly, for circular polarization
both functions pþþ and pþ− are altered at short length scales
due to the presence of birefringence. The reason for this obser-
vation can be understood by considering the rotation of polar-
ization that occurs due to birefringence prior to the first
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scattering event. As the circularly polarized photon enters the
medium and propagates to the first scattering event, it encoun-
ters the birefringence material and becomes elliptically polar-
ized. Thus, when the photon encounters the first scattering
event, the shape of the scattering phase function is altered rela-
tive to the absence of birefringence case (note: although we use
the first scattering event as conceptual description, the described
effect will occur at each scattering event). The degree of altera-
tion in the shape of the phase function is directly related to the
strength of the birefringence; the stronger the birefringence, the
larger the alteration in the phase function. Because of this
change in the phase function, the shapes of pþþ and pþ− are
altered at short length scales due to the presence of birefrin-
gence. Further demonstration of this effect is seen in Fig. 8
with discussion found below.

Trends of E as a function of physiological levels of Δnb;max

are shown in Fig. 9(a). Beginning with Δnb;max ¼ 0, the values
for E are the same as in Table 1. As Δnb;max increases, the value
of E weakly increases for the polarization preserving channels
and more strongly decreases for the orthogonal polarization
channel. The percent change in E for the various polarization
channels relative to the absence of birefringence is shown in

Fig. 9(b). For Δnb;max ¼ 1 × 10−3 (on the order of the highest
value found in biological tissue), there is an approximately 10%
increase in E for the polarization preserving channels attributa-
ble mainly to the change in the shape of the phase function. On
the other hand, in the orthogonal polarization channels E
decreases by ∼37% for the þ− channel and ∼50% for the
xy channel due the destruction of reversibility attributable to
the presence of birefringence.

Figure 8 shows the comparison in the shape of
pðxs; ysÞ · pcðxs; ysÞ between Δnb;max ¼ 0 (left column) and
Δnb;max ¼ 1 × 10−3 (center column). The angular distribution
shown in the right column is found by converting the Cartesian
coordinates into polar coordinates, summing over radius, and
normalizing by the mean. Each of the four rows corresponds
to the polarization channel shown at the far right of the figure.
Starting from the top row we show the xx, þþ, xy and þ−
polarization channels. In the top row, we observe a minimal
change in the shape of pxxðxs; ysÞ, while in the second row
the shape of pþþ is noticeably elongated along the
135°∕315° direction. The explanation for þþ channel is that
the incident right circular illumination becomes elliptically
polarized along the 45- deg ∕225- deg direction as it propagates
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Fig. 8 Alterations in the shape of pðxs; ysÞ · pcðxs; ysÞ due to birefringence for different polarization channels. To emphasize the shape of the various
distributions, each image shows log10½pðxs; ysÞ · pcðxs; ysÞ� in the same intensity scale. (Rows) Each row corresponds to the polarization channel spe-
cified on the far right of the figure: top row shows xx polarization, second row showsþþ polarization, third row shows xy polarization, and the bottom
row shows þ− polarization. (Columns) The left column shows the log10½pðxs; ysÞ · pcðxs; ysÞ� distributions for Δnb;max ¼ 0 and the middle column
shows the distributions for Δnb;max ¼ 1 × 10−3. The right column shows the angular distribution found by converting to polar coordinates, summing
over radius, and normalizing by the mean.
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through the birefringent crystal. This causes a decreased prob-
ability of scattering in the direction of the ellipticity (known as
the dipole factor)17,37 which in turn results in more light intensity
being scattered orthogonal to this direction. The direction of the
elongation depends on the magnitude and sign of Δnb;max as
well as the helicity of incident light. In the third row, the
increased value of function Δnb;max shrinks the spatial extent
of pxyðxs; ysÞ · pcxyðxs; ysÞ due to a more strongly decaying
function pcxyðxs; ysÞ as described above. Finally, in the last
row the shape of pþ−ðxs; ysÞ · pcþ−ðxs; ysÞ is altered from a
symmetric shape to an oblong “X” shape with increasing bire-
fringence. The reason for this shape is the conversion of the inci-
dent circular light to an elliptical state that mimics the “X”
pattern of the xy polarization channel.

5 Conclusions
In this paper, we presented the methodologies needed for per-
forming rigorous electric field tracking Monte Carlo simulations
of CBS in biological media containing birefringence. We began
by reviewing the dependence of the angular CBS peak on the
spatial reflectance profile. Next, we detailed the calculation of
the scattering amplitude matrix for continuous random media
under the Whittle-Matérn model and the calculation of the
Jones N-matrix for light propagation in birefringent media.
We then described the particular computational methods used
to improve the speed and usability of our code. Using a dual
quadcore workstation (2.1 GHz AMD Opteron Processor
2352), a simulation of Rayleigh scattering for 108 photons
can be run in less than 1.5 h. Future developments to our
code can implement GPU acceleration and peer-to-peer net-
working to further improve the speed of our simulations.49

Finally, we provided demonstrations of the results from simula-
tions for purely scattering samples and samples containing scat-
tering and linear birefringence. These simulation results
demonstrate a strong dependence of the shape of the coherent
spatial reflectance profile on polarization, illumination wave-
length, scattering form factor, and degree of linear birefringence.

For samples containing linear birefringence, the shape of the
coherent spatial reflectance profile was altered due to, first,
changes in the shape of the phase function attributable to
changes in polarization state and, second, a more quickly decay-
ing function pcðxs; ysÞ for the orthogonal polarization channels
caused by loss of reversibility between the forward and reverse
propagating rays. The change in the shape of the phase function
causes the two circular polarization channels to exhibit large dif-
ferences in azimuthal distribution, while for the two linear polar-
ization channels the azimuthal distribution remains in large part
the same. The loss of reversibility in the orthogonal polarization
channels causes the enhancement factor to decrease by ∼37%
for the þ− channel and ∼50% for the xy channel for a sample
of Rayleigh scatterers with Δnb;max ¼ 1 × 10−3 and birefrin-
gence vector oriented along the x-axis.

The speed and usability of this software makes it ideal for
studying the alteration in the shape of the CBS peak for different
biological sample compositions. One application of this soft-
ware will be to study early alterations in biological tissue caused
by carcinogenesis. Recent work suggests that one harbinger of
early carcinogenesis is a profound reorganization of the extra-
cellular matrix which causes an alignment of the collagen
fibers.50 This collagen fiber alignment results in an increase
in the degree of birefringence which may be detectable using
CBS. Our software will help elucidate the sensitivities of the

CBS peak to nanoscale mass density fluctuations as well as
levels of birefringence caused by extracellular matrix reorgani-
zation. While the results presented in this paper primarily focus
on the CBS phenomenon, we note that these simulations are also
accurate for conventional diffuse reflectance measurements in
the backscattering direction.
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