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Abstract. Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and
structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra
from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables
include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin,
oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for
combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the
different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the
method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, eval-
uating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model
performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting.
Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with
a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-
time processing. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.047004]
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1 Introduction
Diffuse reflectance spectroscopy (DRS) can be used for assessing
tissue chromophores. Using white light in the visible to near infra-
red wavelength range and small source-detector separations will
allow superficial sampling of tissue which is perfused mainly by
the vessels in the microcirculation. Furthermore, in this wave-
length range the absorption spectra of oxygenized and reduced
hemoglobin show distinct features. This is advantageous for
the determination of tissue oxygenation. With a model-based ana-
lysis of calibrated DRS, where knowledge on the absorption spec-
tra of included tissue chromophores is assumed, quantitative
measures of the chromophores can be attained.1–4 For accurate
estimations, this kind of model must include all chromophores
of importance in the tissue, or else included chromophores
will compensate for omitted ones.1,5 Additionally, the fact that
blood is confined to blood vessels and not homogeneously dis-
tributed must be taken into account.6,7

For setups using small source-detector separations in the visi-
ble and near infrared wavelength range, where the absorption is
on the same scale as the reduced scattering coefficient, diffusion
theory fails to accurately describe light propagation. Instead,
numerical simulations using Monte Carlo techniques provide
a way to overcome these deficiencies. In addition, the Monte
Carlo technique can be used to accurately model arbitrary com-
plex structures.

It has previously been shown that a homogeneousmodel fails to
describe the light propagation in skin at multiple source-detector
separations in the visible wavelength range.5 This fact is a strong

indication that amultilayeredmodel shouldbeusedwhen analyzing
DRS data from skin in order to accurately estimate the chro-
mophore content. Both Wang et al.8 and Yudovsky et al.9 used
Monte Carlo simulations of a two layered model in combination
withaneuralnetworkanalysis approach for estimating tissueoptical
properties (OP).Yudovskyet al. demonstrated that spatial frequency
domain reflectance from a two-layered tissue model could be used
for estimating dermis absorption and reduced scattering, while only
epidermal optical thickness could be determined and this with lim-
ited accuracy.Wang et al. used spatially resolved diffuse reflectance
and found that upper layer thickness improved upper layer OP esti-
mation while lower layer OP accuracy deteriorated. These studies
essentially determine OP using absolute calibrated reflectance at
one wavelength but imply extension to spectroscopic use.

The approach proposed in this article differs in that it utilizes
a subset of Monte Carlo simulated data for a limited number of
tissue geometry and scattering parameters while adding the
unique absorption characteristics of each chromophore directly
in the inverse Monte Carlo algorithm. This is done by applying
Beer-Lambert’s law on multiple path length-distributions in
each layer in the forward calculation. Recordings were taken
at two source-detector distances to make the method more sen-
sitive to a layered structure of the tissue. The inverse algorithm is
designed not to be sensitive to the average intensity detected at
the two distances. This eliminates the need for an absolute cali-
bration of the DRS system, which is difficult to perform accu-
rately, and hence, eliminates the need for a well characterized
calibration phantom that is stable over time.

The aim of this article is to present an inverse Monte Carlo
method that uses a multilayered tissue model to estimate micro-
circulatory parameters in a diffuse reflectance spectroscopy
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setup. The accuracy of the method is evaluated using Monte
Carlo simulations of tissue-like models containing discrete
blood vessels. The performance of the method is compared
to the performance of a similar method using a homogeneous
model with absolute and relative intensity calibration. Examples
of in vivo measurements are also given.

2 Methods, Models, and Measurements

2.1 Three Layered Bio-Optical Model

Photon propagation in tissue was modeled using Monte Carlo
simulations of a three layered bio-optical model with nine
free parameters. The design was based on previously presented
models,10,11 and consisted of one epidermal layer with a variable
thickness tepi (parameter 1) and two dermal layers where the
upper had a fix thickness of 0.5 mm and the lower an infinite
thickness. The scattering coefficient [mm−1] was equal for all
layers and was modeled as

μs ¼ α

�
ð1 − γÞðλ=λ0Þ−β þ γðλ=λ0Þ−4

�
; (1)

where α, β and γ are given by parameters 2 through 4, λ is the
wavelength [nm] and λ0 ¼ 600 nm. The epidermis layer con-
tained a fraction of melanin (fmel [-], parameter 5). The absorp-
tion coefficient [mm−1] of melanin was modeled12 as

μa;melðλÞ ¼ 6.6 × 1010λ−10=3 (2)

and the absorption coefficient [mm−1] of the epidermis layer
was modeled as

μa;0ðλÞ ¼ fmel μa;melðλÞ: (3)

The dermis layers contained different tissue fractions of
blood (f blood;n where n is the layer number, parameters 6-7),
where parameter 6 determines the average blood tissue fraction
of the two layers and parameter 7 determines the relative ratio,
f blood;rel, between the layers. The same blood oxygen saturation
was used in both layers (s [-], parameter 8). The absorption spec-
tra of fully oxygenated and deoxygenated blood13 (μa;oxy and

μa;deoxy, respectively, hematocrit of 43%) are shown in Fig. 1
together with the absorption spectrum of melanin. The absorp-
tion coefficient of blood was given by

μa;bloodðλÞ ¼ sμa;oxyðλÞ þ ð1 − sÞμa;deoxyðλÞ (4)

and the absorption coefficients of the dermal layers were given
by

μa;nðλÞ ¼ f blood;n cvpðλÞμa;bloodðλÞ; (5)

where cvp is a compensation factor for the so called vessel
packaging or pigment packaging effect caused by the inhomo-
geneous distribution of blood (located in discrete vessels rather
than being homogeneously distributed in the layers). This factor
depends on the average vessel diameter D [mm] (parameter 9)
according to Refs. 6, 7, and 14.

cvpðλÞ ¼
1 − exp½−Dμa;bloodðλÞ�

Dμa;bloodðλÞ
: (6)

Mathematically, the nine parameters p1 : : : p9 were used to
calculate the skin model parameters as:

tepi ¼ p1 (7)

α ¼ 2p2 (8)

β ¼ p3 (9)

γ ¼ p4 (10)

fmel ¼ p25=tepi (11)

f blood;avg ¼ p26 (12)

f blood;rel ¼ 2p7 × 8 − 1 (13)

f blood;1 ¼ f blood;avgð1þ f blood;relÞ (14)

f blood;2 ¼ f blood;avgð1 − f blood;relÞ (15)

s ¼ p8 (16)

D ¼ p9. (17)

Here, tepi is the epidermal thickness in mm, fmel is the volume
fraction of melanin, f blood;avg is the average tissue volume frac-
tion of blood, f blood;rel is the relative difference in blood tissue
fraction from the average in the two dermal layers (ranging
between −1 and 1), f blood;1 and f blood;2 are the volume tissue
fraction of blood in the two dermis layers, respectively, s is

Fig. 1 Absorption coefficient of deoxygenized (blue circles) and oxyge-
nized (red squares) blood with a hematocrit of 43%, and melanin (black
diamonds).
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the fraction of oxygenated blood, and D is the average vessel
diameter in mm.

2.1.1 Base simulations

Monte Carlo simulations were run for all combinations of six
levels of the epidermis thickness ([mm])

tepi ¼ x; x ∈ ½0.0; 0.1; : : : ; 0.5�; (18)

and 12 levels of the scattering coefficients ([mm−1])

μs ¼ 2x; x ∈ ½1; 1.5; : : : ; 6.5�: (19)

In total 72 simulations were thus performed.
A Henyey-Greenstein phase function with g ¼ 0.8 was used

in all layers of the model. All layers had a refractive index of 1.4,
whereas the refractive index of the source, detector and sur-
rounding media was 1.5. The numerical aperture of the source
and detector fibers was set to 0.37. All photons propagating out-
side a 5 mm radius of the source were terminated to increase
simulation speed. In each simulation five million photons
were detected between 0.01 and 1.8 mm from the pencil
beam light source. The position of detection, photon weight
and the path length in each layer was stored in the simulations.

2.1.2 Path length distributions

When analyzing the base simulations, the pencil beam source
was smeared out to mimic the size of the real fiber core by con-
voluting the detection positions with a circular area of 200 μm
diameter.15 Two ring detectors were used, one between 0.3 and
0.5 mm (from the source), and one between 1.1 and 1.3 mm. The
photons were re-weighted to reflect the detected intensity in a
fiber rather than the ring detectors used in the simulations.16

Separate path length distributions were created for photons
detected by these two detectors. For each detector, photons
were grouped according to the deepest layer that they had
reached. For each group, distributions were created over the
path lengths that these photons had been propagated in each
of the three layers. This resulted in a set of six distributions
per simulation and detector: the distribution of path lengths
in layer one for the photons that had only been propagating

in layer one; the distribution in layer one for photons that
had only been propagating in layer one and two; the distribution
in layer two for the same photons; and so on. The resulting dis-
tributions (for one source detector separation) is denoted
ppl;m;n(d) where d is the path length, m is the layer number
and n is the number of the deepest layer that the photon reached,
m ≤ n. An example of the six path length distributions for
the short source-detector separation (base simulation with tepi ¼
0.1 mm and μs ¼ 8 mm−1) is shown in Fig. 2.

2.1.3 Forward problem

The forward problem of calculating a model spectrum from the
three layered model was based on interpolation of the path
length distributions from the base simulations using Beer-
Lambert’s law to add the absorption for each path length. We
have previously described the important steps of this multi-
path-length multilayered Beer-Lambert algorithm.11

Initially, a set of path length distributions ppl;m;n(d) were
interpolated linearly in two dimensions from the 72 base simu-
lations, depending on the epidermis thickness of the model and
the scattering coefficient of the wavelength of interest. From
these distributions, the total intensity I0;n for photons that
had reached layer n, was calculated as

I0;n ¼
X
d

ppl;m;nðdÞ; (20)

where I0;n is independent ofm ≤ n. The path length distributions
for varying n were then normalized to unity

p 0
pl;m;nðdÞ ¼

ppl:m;nðdÞ
I0;n

: (21)

The path length distributions were modified for all path
lengths d by adding the absorption using Beer-Lamberts law

p 0 0
pl;m;nðdÞ ¼ p 0

pl;m;nðdÞ expð−dμa;mÞ; (22)

whereμa;m is the absorption coefficient of layerm [seeEqs. (3) and
(5) for theepidermis layerand thedermis layers, respectively].The
detected intensity for all photons that had propagated down to
layer n and back was then calculated as

Fig. 2 Example of path length distributions for detected photons that have only been propagating in the epidermal layer (a), only in the two uppermost
layers (b) and in all three layers (c).
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In ¼ I0;n Π
n

m¼0

X
j

p 0 0
pl;m;nðdjÞ; (23)

and the total detected intensity I was then simply calculated as the
sum of the In∶s. The product in Eq. (23) follows from assuming
that photon path lengths in one layer is independent of their path
length inother layers.Eventhoughthis isanapproximation, itonly
introduces insignificant errors in the modeled spectra.11With this
assumption, a Monte Carlo-based technique that is sufficiently
fast to be used in a real time inverse engineering approach with
amultilayeredmodel is introduced (<1 ms for calculating a single
32-point spectra at the two source-detector separations with our
implementation using an ordinary workstation).

The flow chart in Fig. 3 shows an overview of the forward
problem.

2.2 Inverse Problem

We utilized the Levenberg-Marquardt method17 to find an opti-
mal fit between measured (or simulated) spectra and the
modeled spectra resulting from the forward calculation of the
three layered analysis model. The nine model parameters
were optimized for a least square fit at the two source detector
separations 0.4 and 1.2 mm simultaneously. Before comparing
the spectra, they were normalized by the average intensity of the
short and long source-detector separations, i.e.,

I 0sðλÞ ¼
IsðλÞ�

hI0.4iλ þ hI1.2iλ
�
=2

; (24)

where hIsiλ denotes the average over wavelengths for the spec-
trum at source-detector separation S (0.4 or 1.2 mm). This step
eliminates the need for an absolute intensity calibration of the
detectors—only the relative difference in intensity gain has to be
calibrated.

The choice of merit function, as described in Sec. 2.2.1, is
crucial for model convergence. To further improve the conver-
gence properties of the inverse problem a canonical correlation
analysis was performed to find linear combinations of the
nine model parameters with maximal correlation to linear
combinations of the 32 × 2 spectral points. The Levenberg-
Marquardt method was then applied on the resulting linear

combinations of the model parameters instead of the original
parameters. This is further described in Sec. 2.2.2. Further-
more, a multiple starting point strategy was utilized where
it was assumed that the global minimum was found when
the same minimum point was found from five different start
positions.11

2.2.1 Merit function

The merit function to minimize is given by

χ2 ¼
X
s

X
λ

�
I 0s;measðλÞ − I 0s;modelðλÞ

σsðλÞ
�
2

þ
�
φðI 00.4;measÞ − φðI 00.4;modelÞ

2

�
2

þ
�
φðI 01.2;measÞ − φðI 01.2;modelÞ

0.5

�
2

; (25)

where I 0s;meas denotes the normalized measured (or simulated)
spectrum at the source-detector separation S (0.4 or 1.2 mm),
I 0s;model denotes the normalized modeled spectrum, σs denotes
a weighting factor, and

φðIÞ ¼ hIiλ∈½535;540�;½575;580�
hIiλ∈½550;570�

: (26)

Adding the function φðIÞ to the χ2-error adds importance to
the shape of the spectrum at the double-peak interval of the oxy-
genated hemoglobin spectrum, which improves the oxygen
saturation estimation of the method. To increase the conver-
gence properties and to emphasize important aspects of the spec-
tra, the weighting factor σs vector should be chosen carefully.
For example, by setting σs to a constant, the optimization is
based on the absolute difference between the measurement
and the model, whereas the optimization is based on the relative
difference if σs ¼ Is;meas. In the current study, the weighting
factor was calculated as

Fig. 3 Flow chart describing the forward problem with references to relevant sections and equations.
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σsðλÞ ¼
ζsðλÞ

ðhζ0.4ðλÞiλ þ hζ1.2ðλÞiλÞ=2
; (27)

ζsðλÞ ¼
wðλÞ
vðSÞ

�
hIs;measiλ∈�500;600½ þ Is;measðλÞ

�
; (28)

where vð0.4Þ ¼ 1, vð1.2Þ ¼ ffiffiffi
2

p
and

wðλÞ ¼
�

1 for λ ∈=�500; 600½
ððλ−550Þ=50Þ4þ1

2
for λ ∈ ½500; 600� : (29)

By calculating σ in this way the χ2-error will be influenced
both by the absolute and the relative difference where the
importance of the absorption band of hemoglobin between
500 mm and 600 nm is amplified [wðλÞ], and the contribution
to the χ2-error is higher for the longer source-detector separa-
tion [vðSÞ].

2.2.2 Parameter de-correlation

Although the nine model parameters have been chosen in a way
that they do not apparently change the spectrum in a similar way,
there is still a high degree of correlation between the parameters
in the way they affect the spectra at the two source-detector
separations. That is not ideal for the convergence properties
of the nonlinear optimization problem. To minimize this corre-
lation, a canonical correlation analysis (CCA) was performed.
5000 sets of the model parameters (X) were randomly chosen
between some relevant limits, and the spectra at the two source-
detector separations (Y) were then calculated for each set of the
parameters. The CCA was then performed for X and Y, which
resulted in linear combinations ak of parameters in X which
were maximally correlated to linear combinations bk of the
intensities in Y, at the same time as akX was uncorrelated
with alX for all k ≠ l, and bkY was uncorrelated with blY
for all k ≠ l. In other words, nine new parameters were created,
which were linear combinations of the original nine parameters.
These new parameters affected the spectra in a maximally
uncorrelated manner.

2.2.3 Output

We chose to present the average RBC tissue fraction within a
1.13 mm radius (3.0 mm3 half sphere) from the center of the
light emitting fiber, as the RBC tissue fraction was not homo-
geneously distributed in this analysis model. This volume
reflects the main sampling volumes of the two source-detector
separations rather well.11,18 In addition, the estimated oxygen
saturation is presented and evaluated.

2.3 Homogeneous Analysis Model

For comparison, a homogeneous semi-infinite model containing
a turbid medium that scatters light according to a Henyey
Greenstein phase function with an anisotropy g ¼ 0.8, was
evaluated. The geometry and the numerical aperture of the illu-
minating and detecting fibers, and the refractive indexes of the
model, were all identical to those in the multilayer model. By
using a white Monte Carlo approach19 the effect of changing
the scattering and absorption coefficients was evaluated by
post-processing of a single simulation consisting of half a

million backscattered photons. In this way a dataset that
describes how the absorption and scattering affect the detected
intensity was constructed.

The forward problem of calculating a simulated spectrum
was solved using linear interpolation on this dataset, assuming
a scattering and absorption model equal to that in the multilayer
model [i.e., Eqs. (1) through (17)]. To solve the inverse problem,
where model spectra are fitted to measured spectra (i.e., valida-
tion simulation spectra), a trust-region-reflective optimization
algorithm was employed. Optimization using this algorithm
was done in either one (relative calibration) or two steps (abso-
lute calibration). First, a shape-sensitive merit function that dis-
carded any overall magnitude difference was used. This function
was defined as

χ2s ¼
X
λ

�
Is;modelðλÞ
Is;measðλÞ

=

�
Is;modelðλÞ
Is;measðλÞ

	
λ

− 1



2

: (30)

In the second step the optimization parameters (α, β, γ, fmel,
f blood, s and D) where fine-tuned by including also the overall
magnitude difference. This merit function was defined as

χ2s ¼
X
λ

�
Is;modelðλÞ
Is;measðλÞ

− 1

�
2

: (31)

The last step demands that measured and modeled spectra are
absolute calibrated in magnitude.

2.4 Validation Simulations

In order to test if a three layered model can be used to describe
the light propagation in geometrically much more complex tis-
sue, a set of 50 random validation models, all containing more
than 100 individual blood vessels, were Monte Carlo simulated.
By fitting spectra from the three-layered model to the spectra
resulting from these simulations, the accuracy of the method
could be evaluated. The details on how these models were ran-
domly created can be found in the Appendix. These models con-
sisted of an epidermis layer with a thickness varying between
0.045 and 0.47 mm with a melanin tissue fraction varying
between 0.28% and 9.2%.

A semi-infinite nonabsorbing dermis layer was located
below the epidermis layer. The dermis layer contained between
100 and 1750 infinitely long discrete blood vessels located with
a random orientation parallel to the surface layer. The center
positions of these blood vessels where randomly placed within
a 3 mm radius of the light source. The blood vessels contained
blood with a wavelength dependent absorption coefficient as
given by Fig. 1, and the vessel diameters ranged between 6
and 160 μm. The blood vessel diameter generally increased
with depth in the model. The oxygen saturation level of the
blood in the vessels ranged between 0% and 100%.

The scattering coefficient was equal for both layers and mod-
eled according to Eq. (1), with resulting values ranging between
1.1 and 17 mm−1. A Henyey-Greenstein phase function with
g ¼ 0.85 in the epidermis layer and 0.7 in the dermal layer
was used. The reduced scattering coefficient of the blood
was set to 2.0 mm−1 for all wavelengths, and a Gegenbauer
kernel phase function with gGk ¼ 0.948 and αGk ¼ 1.0 (result-
ing in g ¼ 0.991) was used.10

The refractive index of both layers and the blood vessels was
set to 1.4, whereas the refractive index of the source, detectors
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and surrounding media was set to 1.5. The numerical aperture of
both source and detector was 0.37, the source had a diameter of
200 μm and the detectors were set to ring detectors 0.3 to 0.5
and 1.1 to 1.3 mm from the center of the source, respectively.
For each of the 32 wavelengths, 150,000 photons were detected
in total for the two detectors. A cross sectional view of one of the
models is shown in Fig. 4.

In order to calculate the accuracy of the estimated RBC tissue
fraction and oxygen saturation of the fitted three layered analy-
sis model, we calculated the RBC tissue fraction and oxygen
saturation within a 3 mm3 half sphere in the 50 simulated mod-
els. This calculation was done by randomly probing 15 million
homogeneously distributed points within the 3 mm3 volume,
and calculating the average RBC tissue fraction and oxygen
saturation of these points. The 3 mm3 half sphere is marked
in Fig. 4.

2.5 Testing Parameter Importance

The spectral fitting of various analysis models including differ-
ent sets of the parameters p1 − p9, were statistically compared
by evaluating the χ2-statistics [Eq. (25)]. The full analysis model
(χ2all including parameters p1 − p9), was compared to the analy-
sis model with a reduced number of parameters: indefinitely thin
epidermis thickness (χ2tepi¼0

), constant scattering parameter α ¼ 2

(χ2α¼2), removing β by setting scattering parameter γ ¼ 1 (χ2γ¼1),
removing scattering parameter γ (χ2γ¼0), no melanin in the epi-
dermis (χ2fmel¼0), constant average RBC tissue fraction
(χ2f blood;avg¼0.4), same RBC tissue fraction in both dermis layers

(χ2f blood;rel¼0), constant blood oxygen saturation (χ2s¼0.5), and no

compensation for the vessel packaging effect (χ2D¼0). Note
that the model with an indefinitely thin epidermis thickness
still contains melanin [see Eq. (11)]. The χ2-error for the full
analysis model versus any of the reduced analysis models
was tested using the test variable

v ¼ χ2red − χ2all
nχ2

all
− nχ2

red

=
χ2all

N − nx2
all
− 1

; (32)

where χ2red is any of the reduced analysis models, n : : : is the
number of parameters in the given analysis model (9 for the
full model, 8 for all the reduced models except nγ¼1 ¼ 7)
and N is the number of points compared in Eq. (25)
(32 × 2þ 2 ¼ 66). The test variable v is Fð1;N − nχ2

all
− 1Þ-

distributed. A v > 7.2 indicates that the full model has a signifi-
cantly lower χ2-error than the reduced model at a level of
significance of p < 0.01. This test comparing residual spectra
for different models is described elsewhere.20

2.6 In Vivo Measurement

One measurement was performed on the volar side of the fore-
arm of a healthy volunteer (male, 31 years old, fair skin).
A blood pressure cuff was placed on the upper arm and inflated
to a pressure of 170 mm Hg after 1 min of the measurement,
completely occluding the blood flow. The pressure was held
for 3 min and the measurement lasted for another 3 min.

A custommade optical fiber probewas used to deliver light to
the tissue and to transmit the backscattered light to the detectors.
The illuminating fiber was placed in the middle of the probe tip,
and two light collecting fibers were placed at 0.4 and 1.2 mm,
respectively, away from the center of the illuminating fiber.
The fibers were made of fused silica, had a diameter of 200 μm
and a numerical aperture of 0.37. The illuminating fiber was con-
nected to a broadband white light source (Avalight-HAL-S,
Avantes BV, The Netherlands), and the light collecting fibers
were connected to two spectroscopes (AvaSpec-ULS2048L,
Avantes BV, The Netherlands). The measurement probe was
placed in a plastic probe holder (PH 08; Perimed AB, Järfälla,
Sweden) which was fixated to the skin using double-sided adhe-
sive rings (PF 105-1; Perimed AB). This assured a minimum
contact pressure between the probe tip and the examined skin.

Before analyzing the recorded spectra, the spectra corre-
sponding to each source-detector separation, were processed
in three calibration steps:

1. A dark reference spectrum was subtracted.

2. The spectrum was normalized with a white reference
spectrum.

3. The spectrum was normalized by the mean intensity at
612 to 617 nm from a measurement (calibrated accord-
ing to steps 1 and 2 above) where the face of the probe
was evenly illuminated.

Steps 2 and 3 are both relative calibration steps that enable
inter-wavelength and inter-channel intensity comparisons. No
additional calibration between modeled and measured intensity
is necessary as this difference is removed when solving the
inverse problem by normalizing with their average inten-
sity [Eq. (24)].

3 Results

3.1 Forward Calculation

We simulated a three layered model with RBC tissue fraction of
0.32% and blood oxygen saturation of 80%. The detected inten-
sities at each wavelength were compared with the forward
calculated spectra of the three layered analysis model with
the exact same properties. The comparison is shown in

Fig. 4 Cross sectional view of one of the validations models. The model
contained 1275 vessels. The source can be seen as the middle rectan-
gle, whereas the two ring shaped detectors constitute the other four
rectangles at the top of the image.
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Fig. 5. In this particular example, the relative RMS deviation
between the simulated and forward calculated spectra was 1.0%.

3.2 Necessary Parameters

The comparison of analysis models [Eq. (32)] was performed on
the 50 simulated models. The results indicated that the full
analysis model had a significantly smaller χ2-error than the
reduced analysis models in nsignificant of 50 models according
to Table 1. The effect of the reduced analysis models on the
absolute RMS deviation between the true and estimated RBC
tissue fraction and blood oxygen saturation was also evaluated
on the 50 simulated models. The RMS deviations for all models
are also found in Table 1.

The spectral fit was significantly better for at least 28 of the
50 simulated models for the full analysis model compared to any
of the reduced analysis models. In addition, the RMS deviation
between the true and estimated RBC tissue fraction and blood
oxygen saturation was generally much lower for the full than for
the reduced analysis models, and only marginally higher in two
cases (blood oxygen saturation for χ2f blood;rel¼0 and χ2D¼0). Hence,
the full analysis model was used in the further analysis.

3.3 Accuracy of RBC Tissue Fraction and Oxygen
Saturation

3.3.1 Three layered analysis model

The plots in Fig. 6 show the estimated RBC tissue fraction and
blood oxygen saturation, respectively, compared to the values
calculated from the 3 mm3 half sphere in the simulated models.
The absolute RMS deviation between the true and estimated
RBC tissue fraction was 0.087 percentage units and the absolute
RMS deviation of the oxygen saturation was 4.2 percentage
units (see also Table 1).

Half of the simulated models had an RBC tissue fraction
<0.3%. For these models, the absolute RMS deviation
was 0.055 and 5.3 percentage units for the RBC tissue fraction
and blood oxygen saturation, respectively. The relative RMS
deviation for the RBC tissue fraction was 24% for these models.
For the models with an RBC tissue fraction >0.3%, the absolute
RMS deviation was 0.11 and 2.9 percentage units for the RBC
tissue fraction and blood oxygen saturation, respectively,
and the relative RMS deviation for the RBC tissue fraction
was 19%.

An example of the model fit is given in Fig. 7. The chosen
spectra had the median χ2-deviation of all 50 models.

Table 1 Performance of various analysis models.

χ2all χ2tepi¼0 χ2α¼2 χ2γ¼1 χ2γ¼0 χ2fmel¼0
χ2f blood;avg¼0.4 χ2f blood;rel¼0

χ2s¼0.5 χ2D¼0

nsignificant — 37 50 50 49 47 45 28 41 39

RMS RBCa 0.087 1.1 3.8 8.1 0.12 4.7 0.22 0.10 0.10 0.14

RMS oxyb 4.2 9.9 19 40 13 38 14 4.0 11 3.5

aNumber of simulated models that had a significantly lower χ2-error with the full analysis model than the reduced model.
bAbsolute RMS deviation between estimated and true RBC tissue fraction or blood oxygen saturation, in percentage units.

Fig. 5 Examples of the spectral fit between the simulated (thick black) and forward calculated (thin red) spectra, 0.4 mm (a) and 1.2 mm (b) source
detector separations. Corresponding residuals are also shown (c) and (d).
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3.3.2 Homogeneous analysis model

The 50 simulated models were also analyzed using the homo-
geneous analysis model described in Sec. 2.3. The data was ana-
lyzed in three different ways: 1) a single detector using absolute
calibration; 2) a single detector using relative calibration; and
3) two detectors using relative calibration. When the absolute
intensity of a single spectrum was considered [1, merit function
Eqs. (30) and (31)], the absolute RMS deviation of the RBC
tissue fraction was 0.20 and 0.15 percentage units, respectively,
analyzed for the source-detector separations of 0.4 and 1.2 mm.
When the single spectra were relative calibrated [2, by using
Eq. (30) in the merit function], corresponding numbers were
0.20 and 0.14 percentage units. These results should be com-
pared to an RMS deviation of 0.087 percentage units for the
three layered analysis model. Corresponding numbers for the
RMS deviation of the blood oxygen saturation were 11 and
5.8 percentage units for absolute calibrated spectra and 12
and 5.3 percentage units for relative calibrated spectra, com-
pared to 4.2 percentage units for the three-layer model. Paired

t-tests indicated that the average deviation between estimated
and true RBC tissue fraction and blood oxygen saturation
was significantly (p < 0.01) lower for the three layered analysis
model than for the homogeneous analysis model at both source-
detector separations. The estimated RBC tissue fraction and
blood oxygen saturation from the homogeneous analysis
model with absolute calibration are shown in Fig. 8.

When using the homogeneous model and considering rela-
tive calibrated spectra at both separations (3), the spectral fit was
poor (average spectral RMS deviation of 9.7%, compared to
1.3% for the three layered model), with obvious incorrect esti-
mations of especially the blood oxygen saturation (RMS devia-
tion of 30 percentage units).

3.4 In Vivo Measurement

The RBC tissue fraction and blood oxygen saturation during the
occlusion measurement are shown in Fig. 9. A slight increase in
RBC tissue fraction can be noticed during the first minute of the
occlusion, likely due to redistribution of blood to the venous

Fig. 6 Estimated RBC tissue fraction (a) and oxygen saturation (b) in fitted three layered models versus the same quantities calculated from the simulated
models.

Fig. 7 Example of spectral fit (thin red) to spectra from simulated model (thick black) at 0.4 mm (a) and 1.2 mm (b) source-detector separations.
Corresponding residual spectra are also shown (c) and (d).
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side. As the pressure is released, a short peak is seen in the
RBC tissue fraction, before it approaches the baseline. The
blood oxygen saturation is slowly decreased during the occlu-
sion, and a massive and quick increase is seen when the
pressure is released, before it slowly approaches the baseline.
Two examples of the spectral fit, at 0.5 and 3 min, are
shown in Fig. 10.

4 Discussion
There are two key findings in this study. First, a three layered
multi parameter tissue model is needed to explain spectra
recorded at two separate source-detector distances in realistic
simulated tissue models. The light propagation cannot be
explained using a homogeneous tissue model. Secondly,
when detecting the light at two distances from the source, a rela-
tive calibration routine, which only determines the relative
intensity gain between the detectors, is sufficient.

The proposed method has an important advantage in the fact
that it is not dependent on an absolute intensity calibration. An
accurate absolute calibration is complicated to perform as it is
sensitive to changes in the calibration standards, and thus error
prone. Furthermore, when using an absolute calibration the
inverse algorithm may become sensitive to measurement imper-
fections that are not included in the model but affect the two
distances similarly, such as an air gap between the probe and
the tissue and to intensity variations in the light source.3

The need for use of an index matching liquid is thus reduced,
which facilitates the measurement procedure.

Simulated tissue-like models were used to determine the
accuracy of the method, since controlled optical phantoms can-
not be constructed with enough geometrically complexity. We
have previously proven that it is possible to simulate homoge-
neous optical phantoms using a very similar measurement setup
with high accuracy.21 Wang et al. managed to construct a two-
layered semi-infinite tissue phantom8 with controlled OP, but
still their tissue model was too simplified to mimic skin. The
aim of the validation in this study was to test if a three layered
model can describe the light propagation in a geometrically
more complex, tissue-like, structure, and therefore optical phan-
toms were ruled out. In vivo measurements are improper for
initial method validation since the exact expected values of
the RBC tissue fraction and oxygen saturation cannot be deter-
mined, and the accuracy can thus not be evaluated. However,
in vivo studies where the method is used are important to show
the applicability of the method, and such studies are ongoing.

The three layered analysis model consisted of nine variable
parameters. It was concluded that all nine parameters contribu-
ted to a significantly improved model fit in at least 28 of the 50
simulated tissue-like models. Based on the data presented in
Table 1, it may be questioned if the parameters controlling
the relative amount of blood in the two dermal layers and the
average vessel diameter are necessary (significantly better fit

Fig. 9 RBC tissue fraction (a) and oxygen saturation (b) during a provocation where the blood flow was occluded (between 1 and 4 min).

Fig. 8 Estimated RBC tissue fraction (a) and oxygen saturation (b) in fitted homogeneous models versus the same quantities calculated from the simu-
lated models.
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in 28 and 39 of 50 spectra, but comparable RMS deviation in
RBC tissue fraction and oxygen saturation). It should be noted,
however, that in most of the 50 simulated models the blood tis-
sue fraction does generally not differ much between superficial
and deeper parts of the dermis, and the average vessel diameters
are generally small compared to what can be expected in real
tissue. In models where this was not the case, both the spectral
fit and the estimation of the RBC tissue fraction were much
worse when any of these parameters were excluded. The data
in Table 1 also indicate the importance of not excluding any
significant parameter; as doing so will cause the other para-
meters to compensate for the missing one. By omitting sig-
nificant parameters the estimations of the RBC tissue fraction
and oxygen saturation will be poor (see for example the
column χ2γ¼0 in Table 1). The importance of not excluding any

significant parameter has also been demonstrated in other
studies.1,5

In measurements on real tissue, the set of model parameters
may need to be revised to better reflect the actual content
and structure of the tissue under investigation and to improve
the spectral fit. In epidermis and subcutaneous fat, beta-carotene
has a nonnegligible absorption up to 500 nm.22 In blood,
small amounts of bilirubin and met-hemoglobin are present
and these concentrations may be high enough to have a significant
influence on the diffuse reflected spectra in the visible wavelength
range <500 nm for bilirubin and between about 600 and 650 nm
for met-hemoglobin) under some physiological conditions.13,22,23

Water and fat are present in high amounts in tissue, but their
absorption is negligible in the wavelength range used in this
study (450 to 850 nm).24,25 In muscle tissue, oxygenized and

Fig. 10 Examples of the spectral fit between the measured (thick black) and fitted (thin red) spectra. Spectral fits are shown for the short (a) and (e) and
long (b) and (f) source-detector separations at 0.5 (a) and (b) and 3 min (c) and (d). Corresponding residual spectra (relative deviation) are also shown (c,
d, g, and h).
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reduced myoglobin and cytochrome (c and aa3) both have sig-
nificant effect on the diffusely reflected spectra. Myoglobin
has absorption spectra rather similar to hemoglobin and it may
be difficult to distinguish them. The cytochromes, which have
characteristic absorption bands in the wavelength interval 500
to 650 nm, take a central part of the oxygen transport in the mito-
chondria in the cell, and monitoring their oxidation status is phy-
siologically very interesting.1,26 The same strategy as adopted in
this study to determine model parameters that has a significant
effect on the spectral fit can be adopted in clinical studies to deter-
mine which additional chromophores should be included when
analyzing various types of tissue, and if any of the nine para-
meters included here should be removed. Studying Fig. 10, it
may be seen that the spectral fit is relatively poor below
500 nm for the long fiber separation, a fact indicating that the
model might benefit from the inclusion of bilirubin.

An alternative to the multi-path-length multilayered Beer-
Lambert algorithm presented in this paper is to use a five dimen-
sional look-up-table (LUT), where the five dimensions are
constituted by epidermis thickness, scattering coefficient and
absorption coefficient in the three layers, respectively. The
LUT could be constructed from the same base simulations as
used here, adding the effect of the absorption directly on
each photon in a post processing step performed once (doing
that for each forward calculation would be too slow). Using
a LUT could even be faster than the proposed algorithm, but
the absorption range in all three layers has to be restricted
and the resolution in the absorption dimensions has to be
fine enough over the whole range for accurate results.

One main focus during the development of the proposed
multilayered inverse Monte Carlo technique has been to opti-
mize the convergence properties. Equation (1) as well as
Eqs. (7) through (17) are carefully chosen to ensure that the
parameters affect the spectral shape in a somewhat linear man-
ner over a wide range of parameter values, for example with the
exponential in Eqs. (8) and (13), and the squares in Eqs. (11) and
(12). Even if the parameters should affect the spectra in a per-
fectly linear manner, large correlations between how different
parameters affect the spectra may exist. Such correlations
have a negative influence on the convergence properties and
should be avoided—such as by performing the canonical corre-
lation analysis described in Sec. 2.2.2. Note that this type of
de-correlation is not very efficient if the parameters affect the
spectra in a highly nonlinear fashion.

When dealing with algorithms based on model fitting, one
faces a possibility of rejecting models with a poor spectral fit
to the measured spectra. One can also evaluate how sensitive
the modeled spectra are to variations in the model parameters.
If a parameter has a low impact on the model spectra, it is likely
to be less accurately estimated. In both cases, one cannot assume
that the fitted model reflects the actual quantities accurately.
This is an advantage compared to methods that only calculate
some type of index in the measured spectrum.

Other model parameters than the RBC tissue fraction
and blood oxygen saturation may be clinically interesting in var-
ious clinical situations. Both the averagevessel diameter and scat-
teringparameters, obtainedwith relatedmethods,hasbeenused in
studies involving various types of cancer.27–30 The epidermal
thickness, volume fraction of melanin and depth distribution of
blood (f blood;rel) may also be interesting, but before using any
of these parameters as a clinical parameter, their accuracy should
be evaluated.Wehave chosennot to evaluate the accuracy of these

model parameters due to the fact that the method has been
designed to estimate only the RBC tissue fraction and oxygen
saturation accurately, especially when choosing the χ2-merit
function (Sec. 2.2.1).

In conclusion, the three-layered analysis model is able to
describe diffusely reflected spectra at two close butwell separated
source-detector separations simultaneously and is able to estimate
the RBC tissue fraction and blood oxygen saturation more accu-
rately than a homogeneous analysis model. An RMS deviation of
0.087 and 4.2 percentage units in the estimated RBC tissue frac-
tion and blood oxygen saturation, respectively, was achieved on
50 simulated tissue-likemodels containingdiscrete bloodvessels.
No absolute calibration routine is needed for the method, and it is
fast enough for real time analysis of recorded data.

Appendix: Creation of Validation Simulations
This appendix gives the details about how the validation models
were randomly created.

The vessel diameter was given from a gamma distribution
with parameters α and β. The probability density function of
a gamma distribution Γðα; βÞ) is given by

f ðx; α; βÞ ¼ βα

ΓðαÞ x
α−1 expð−βxÞ; (33)

where Γð : : : Þ is the gamma function. At z ¼ 0 mm (the border
between the epidermis and the dermis layer) the expectation
value D̄ of the vessel diameter was calculated from ξþ 6 μm
where ξ was a random variable with a gamma distribution
Γð3; 0.5Þ, and α was set to ξ where ξ was a random variable
from a rectangular distribution between 2 and 3 (Rð2; 3Þ). At z ¼
3 mm (i.e., 3 mm down in the dermis layer) D̄ and α were
instead given with ξ distributed as Γð4; 0.25Þ and Rð1; 1.5Þ,
respectively. For all z between 0 and 3 mm, D̄ and α were linearly
interpolated between the resulting values, and β was then calcu-
lated as β ¼ α=ðD̄ − 6Þ. Choosing the vessel diameters in this
way causes the vessel diameters to increase with z in general.

The approximate RBC tissue fraction C was given from ξ
where ξ was given from the gamma distribution Γð1.5; 3Þ.
The number N of vessels were calculated from

N ¼ Cr2π
2 f HCT × Ā1

; (34)

where r ¼ 3 mm, f HCT is the hematocrit (set to 0.43) and is the
expectation value of the vessel cross sectional area at z ¼ 1 mm.

A lower limit s0 of the blood oxygen saturation was ran-
domly chosen between 0 and 50% (rectangular distribution)
for each model. For each vessel, the oxygen saturation level
was calculated from ξ2ð1 − s0Þ þ s0, where ξ was Rðs0; 100Þ.

The epidermis thickness was set to ξ2 where ξ was normally
distributed with expectation value of 0.4 and standard deviation
of 0.1 (Nð0.4; 0.1Þ). The melanin tissue fraction in % was given
by ξ where ξwas Γð1.75; 0.5Þ. The parameters α, β, γ giving the
scattering coefficient were all given by ξ2 where ξ was
Nð0.9; 0.15Þ, Nð0.8; 0.2Þ and Nð0.25; 0.05Þ, respectively.
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