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Abstract. Bioluminescence tomography (BLT) has been successfully applied to the detection and therapeutic eva-
luation of solid cancers. However, the existing BLT reconstruction algorithms are not accurate enough for cavity
cancer detection because of neglecting the void problem. Motivated by the ability of the hybrid radiosity-diffusion
model (HRDM) in describing the light propagation in cavity organs, an HRDM-based BLT reconstruction algorithm
was provided for the specific problem of cavity cancer detection. HRDM has been applied to optical tomography
but is limited to simple and regular geometries because of the complexity in coupling the boundary between the
scattering and void region. In the provided algorithm, HRDM was first applied to three-dimensional complicated
and irregular geometries and then employed as the forward light transport model to describe the bioluminescent
light propagation in tissues. Combining HRDM with the sparse reconstruction strategy, the cavity cancer cells
labeled with bioluminescent probes can be more accurately reconstructed. Compared with the diffusion equation
based reconstruction algorithm, the essentiality and superiority of the HRDM-based algorithm were demonstrated
with simulation, phantom and animal studies. An in vivo gastric cancer-bearing nude mouse experiment was con-
ducted, whose results revealed the ability and feasibility of the HRDM-based algorithm in the biomedical applica-
tion of gastric cancer detection. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.6.066015]
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1 Introduction
Bioluminescence imaging (BLI) has attracted much attention
and obtained wide applications in recent years because of its sig-
nificant advantages in specificity, sensitivity, cost-effectiveness,
safety and high throughput.1–5 Its three-dimensional (3D) tomo-
graphic partner, bioluminescence tomography (BLT) has become
an invaluable tool for in vivo preclinical studies because of its
ability to recover the localization and concentration of biolumi-
nescent probes inside small living animals in 3D.6 Mathemati-
cally, BLT is an inverse source problem with the intrinsic nature
of severe ill-posedness.7 Based on the accurate light transport
model, the goal of BLT is to three-dimensionally reconstruct
the distribution of the targeted probes by integrating the multiple
two-dimensional bioluminescent images, geometric structures
and optical properties of tissues.8–13 Of the potential applica-
tions, BLT has been successfully applied to detection and ther-
apeutic evaluation of solid cancers,14–16 such as the detection
of liver cancer and prostate cancer, and the prediction of pro-
state cancer metastasis.14,15 However, due to the inherent char-
acteristics of cavity cancer in which the tumor cells commonly

originate from the mucosa and grow outwards, the biolumines-
cent light will pass through a non-scattering region constructed
by the pouch of the cavity organ when measured on the body
surface. The existing BLT reconstruction algorithms based on
the approximation model of the radiative transfer equation
(RTE)8–13 are not accurate enough for such a problem because
of the poor ability of the approximation models in describing
light propagation in cavity organs.17–21

Cavity cancers, such as gastric cancer and cervical cancer, have
a relatively lower survival rate of cancer-related death. They
remain difficult to cure because when using the existing techni-
ques, they are predominantly diagnosed in the late stage. For
example, gastric cancer is the second-leading cause of cancer mor-
tality worldwide with a five-year survival rate of 20 to 30%.22,23

Accurate detection of cavity cancers becomes one of the effective
approaches to decrease cancer mortality. Motivated by successful
applications of the BLT technique in the detection of liver and
prostate cancers, BLT may also be used for cavity cancer detec-
tion. However, a non-scattering region that commonly exists in
biological tissues, such as the stomach, esophagus, intestines
and bladder, has great influence on the reconstructed images.17

Several solutions have been proposed to handle the light propaga-
tion in the non-scattering region, such as the hybrid RTE-diffusion
model (HTDM), the hybrid Monte-Carlo-diffusion model
(HMDM) and the hybrid radiosity-diffusion model (HRDM).18–21

The computational complexity and expensive time-cost of the
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RTE and Monte Carlo method (MCM) limit the applications of
the HTDM and HMDM in the inverse problem of optical imaging.
In view of the significant advantage in computational efficiency,
the HRDM has been acceptably applied to optical imaging.20,21

However, the application of the HRDM in existing studies is lim-
ited to the two-dimensional (2D) and 3D simple and regular geo-
metries, such as concentric circles or homocentric spheres, to the
best of our knowledge. For such concentric circles or homocentric
spheres, the boundary coupling between the scattering and non-
scattering region can be easily implemented. However, it is diffi-
cult for complicated geometries because of the irregularity of the
boundary.

In this paper, an HRDM-based BLT reconstruction algorithm
was applied to the specific problem of cavity cancer detection.
In the provided algorithm, the HRDM was first applied to 3D
complicated and irregular geometries and then employed as the
forward light transport model to characterize the bioluminescent
light propagation in both the non-scattering and high scattering
region. In the HRDM, the mismatched boundary condition of
the refractive index was employed to form a Neumann source
at the interface of the non-scattering and scattering region,
which was used to couple the radiosity theory and the diffusion
equation (DE). Using the finite element technique, the HRDM
was discretized and converted into a linear matrix equation that
established the linear relationship between the measured biolu-
minescent signals and the internal bioluminescent probes.
Considering the sparse nature of the bioluminescent probes
and the insufficiency of the measurements, an l1 norm regular-
ization term was integrated into the objective function as the pen-
alty term. Finally, the primal-dual interior-point method was used
to solve the objective function and reconstruct the internal biolu-
minescent probe distribution.24 The performance of the algorithm
was first evaluated with experiments of a concentric cylinder and
a digital mouse to simulate two kinds of cavity cancers, cervical
and gastric cancers respectively. To illustrate the essentiality and
superiority of the HRDM in dealing with the non-scattering pro-
blem, the reconstructed results of the HRDM-based algorithm
were compared with those of the DE-based one. Furthermore,
a physical phantom was designed and used to illustrate the effec-
tiveness of the HRDM-based algorithm in the real optical imaging
experiment. Finally, an in vivo gastric cancer-bearing nude mouse
experiment was conducted. The primary results revealed the abil-
ity and feasibility of the HRDM-based algorithm in the biome-
dical application of gastric cancer detection.

2 Methodologies

2.1 Forward Light Transport Model: Hybrid
Radiosity-Diffusion Model

Because tumor cells of cavity cancers commonly originate in the
mucosa of the cavity organ and grow outward, the emitted bio-
luminescent light goes through a non-scattering region formed
by the pouch of the cavity organ when it was measured at the
body surface. Thus, the forward light transport model must pos-
sess the ability to describe light propagation in both scattering
and non-scattering regions. In the scattering region, the DE and
Robin boundary condition are utilized to describe the biolumi-
nescent light propagation:25

−∇ · ½DðrÞ∇ϕðrÞ�þμaðrÞϕðrÞ¼qðrÞ; r∈Ωdt;

ϕðrÞþαðrÞDðrÞ½υðrÞ ·∇ϕðrÞ�¼0; r∈∂Ωdt; (1)

whereΩdt denotes a scattering region with a boundary ∂Ωdt; ϕ is
the nodal flux density; D is the diffusion coefficient; μa is the
absorption coefficient; α is the mismatch factor of the refractive
index; υ is the outward unit normal vector on the boundary ∂Ωdt;
and q denotes the internal bioluminescent probe.

Within the non-scattering region, the propagation of biolumi-
nescent light can be characterized by the radiosity theory as:26

Gðr 0; rÞ ¼ ζðr 0; rÞ cos θ cos θ 0

jr 0 − rj2 expð−μ 0
ajr 0 − rjÞ; r; r 0 ∈ B;

(2)

where B is the interface between the non-scattering and scatter-
ing region; Gðr 0; rÞ denotes the transfer function between the
points on the interface B; ζ is the visibility factor; θ and θ 0
are angles between the surface normal at r 0, r and the unit direc-
tion vector from r 0 to r; and μ 0

a is the absorption coefficient of
the non-scattering region.

When the bioluminescent light propagates across interface
B along the direction from the scattering to the non-scattering
region, diffuse bioluminescent light transforms into non-diffuse
light. Thus, the following refractive-index mismatched bound-
ary condition is established for the transformation:

Jnðr 0Þ ¼
ϕðr 0Þ
αðr 0Þ ; (3)

where r 0 is a point on the interface B; Jnðr 0Þ is the light flux rate
that points to the inside of the non-scattering region; and ϕðr 0Þ is
the light flux constructed by the bioluminescent light propagat-
ing in the scattering region.

On the other hand, when the bioluminescent light propagates
across interface B along the direction from the non-scattering
to the scattering region, non-diffuse bioluminescent light trans-
forms into diffuse light. In such a case, a Neumann source is
assumed to be formed at interface B because of the light pro-
pagation in the non-scattering region:26

q0ðrÞ ¼
Z
B

1

π
Jnðr 0ÞGðr 0; rÞdB; r; r 0 ∈ B; (4)

where q0 denotes the Neumann source formed at interface B.
Integrating the bioluminescent light propagation in both the

scattering and non-scattering regions, a synthetic light source
was constructed by adding the original bioluminescent source
and the Neumann source. Substituting the original biolumines-
cent source qðrÞ in Eq. (1) with the synthetic light source and
putting Eqs. (2)–(4) into Eq. (1), the final integrated hybrid
radiosity-diffusion model (HRDM) can be obtained as:27

− ∇ · ½DðrÞ∇ϕðrÞ� þ μaðrÞϕðrÞ

¼ qðrÞ þ
Z
B

1

π

ϕðr 0Þ
αðr 0Þ ζðr

0; rÞ cos θ cos θ 0

jr 0 − rj2
× expð−μ 0

ajr 0 − rjÞdB: (5)

2.2 Inverse Reconstruction: Finite Element
Discretization and Sparse Reconstruction

Using the finite element discretization technique, the hybrid
light transport model was discretized and converted into the

Journal of Biomedical Optics 066015-2 June 2012 • Vol. 17(6)

Chen et al.: Comparisons of hybrid radiosity-diffusion model and diffusion equation : : :



following linear equation that links the internal bioluminescent
source distribution and the nodal flux density:

MΦ ¼ Q; (6)

where the component of M can be described as:25,26

mij ¼
Z
Ωdt

DðrÞ½∇φiðrÞ� · ½∇φjðrÞ�dr

þ
Z
Ωdt

μaðrÞφiðrÞφjðrÞdrþ
Z
∂Ωdt∪B

1

αðrÞφiðrÞφjðrÞdr

−
Z
B

Z
B

1

παðr 0ÞGðr; r
0ÞφiðrÞφjðr 0ÞdBdB 0; (7)

where φi and φj are the interpolation basis functions.
Removing the rows of the inverse matrix of M that corre-

sponds to the light flux density at the internal nodes, Eq. (6)
was converted into the following simplified formula:

AQ ¼ Φmeas; (8)

where A is the system matrix obtained by the finite element
discretization.

Considering the sparse assumption of the internal biolumi-
nescent probe and the insufficient measurements, Eq. (8) was
rewritten as a sparse regularization problem, in which an l1

norm regularization term was utilized and integrated into the
objective function:

Q̂ ¼ argmin
Q

1

2
kAQ −Φmeask22 þ λkQk1; (9)

where Q̂ represents the reconstructed distribution of the biolumi-
nescent probe and λ is the regularization parameter. Equation (9)
can be efficiently solved using a common optimization method,
such as the primal-dual interior-point algorithm utilized in this
paper.24

3 Experiments and Results
In this section, four experiments were conducted to validate the
performance of the HRDM-based algorithm, including two het-
erogeneous simulations, a nylon phantom experiment and an
in vivo gastric cancer-bearing nude mouse experiment. Further-
more, the DE model-based reconstruction algorithm, in which
the DE model instead of the HRDMmodel was used to describe
light propagation in tissues, was employed to illustrate the
superiority of the HRDM-based algorithm. To quantitatively
evaluate the reconstructed results, the distance error d and
the quantification error E were employed:

d ¼ jrca − rcrj; and E ¼ jQa −Qrj∕Qa;

where rca denotes the actual position of the bioluminescent probe;
rcr is the reconstruction position that was determined by the

Fig. 1 Reconstructed results of the HRDM- and DE-based algorithms. (a) and (b) show the results of the HRDM-based algorithm; (c) and (d) are those of
the DE-based algorithm; (a) and (c) are the 3D views of the results, and the corresponding axial views are shown in (b) and (d). The red solid sphere
represents the actual source, and the colored domains denote the reconstructed sources.
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position where the maximum reconstructed density was located
and obtained by the HRDM- or the DE model-based algorithm;
Qa is the actual power density of the source; and Qr is the recon-
structed source density using the HRDM- or the DE model-based
algorithm. It is worth noting that the tetrahedral meshes used for
both the HRDM- and DE model-based algorithms had almost the
same size.

3.1 Heterogeneous Models-Based Simulation
Demonstrations

In this subsection, two heterogeneous models were designed and
employed to simulate the cavity cancer models, including a
homocentric cylinder and a digital mouse atlas. To avoid the
inverse crime, the simulated boundary measurements were
obtained by the Molecular Optical Simulation Environment
(MOSE) software,28–30 which is based on the Monte Carlo
method to simulate light propagation in tissues.

3.1.1 Cervical cancer-mimic simulation

In this simulation, a cylindrical phantom with a radius of 15 mm
and a height of 30 mm was employed, which consisted of a con-
centric cylinder with an inner radius of 4 mm and an inner height
of 18 mm to simulate the cervix. The optical properties of the
tissue around the cervix were specified as: the absorption coef-
ficient was 0.024 mm−1 and the reduced scattering coefficient
was 1.5708 mm−1 (Ref. 31), and the cervix was considered as
the non-scattering region. To simulate the internal biolumines-
cent probe that was marked on the cervical cancer cells, a sphere
with a 1 mm radius was used and located at (8, 0, 0) mm, 3 mm
away from the cervix. For simplicity, a total bioluminescent
optical power of 1 nW was assumed in all simulations in this
study.32 Thus, a power density of 0.238 nW∕mm3 could be
obtained through dividing the unity power by the volume of
the source. Figure 1 presents the reconstructed results for both
the HRDM- and DE-based algorithms, where Fig. 1(a) and
1(b) shows the results of the HRDM-based algorithm, and
Fig. 1(c) and 1(d) is those of the DE-based algorithm. Figure 1
(a) and 1(c) is the 3D view of the results, and the corresponding
axial views are shown in Fig. 1(b) and 1(d). The detailed com-
parison results are given in Table 1. From Fig. 1 and Table 1, we
can find that both the localization and quantification results of

the HRDM-based algorithm were encouraging compared with
the DE model-based method, with the distance error being
0.77 mm and the quantification error being 5.57%. On the con-
trary, the distance error of the DE-based algorithm was 2.41 mm
and the quantification error reached 50.32%. The overestimated
source density was induced by neglecting the non-scattering
region. The cylindrical phantom simulation results demon-
strated that the HRDM-based algorithm well resolved the inter-
nal bioluminescent source in regular geometries.

3.1.2 Gastric cancer-mimic simulation

A digital mouse atlas, extracted from CT and cryosection data,33

was utilized to perform the gastric cancer-mimic simulation to
validate the ability of the HRDM-based algorithm in an irregular
shape phantom simulation. In the simulation, only the torso sec-
tion of the digital mouse was selected, and the detailed optical
properties of each organ are listed in Table 2.34 In this study, the
stomach was modeled as an air bubble, termed as the gastric
pouch, which was used to simulate the cavity organ. Because
it is difficult to localize the stomach wall during organ segmen-
tation and impossible to discretize it during finite element dis-
cretization, the stomach wall was not modeled. An ellipsoid
with the size of (1, 1.5, 1) mm was positioned at (26, 12, 23) mm
to mimic the inner bioluminescent probe that has been marked
on the gastric cancer cells, as shown in Fig. 2(a). Similar to the

Table 1 Results of the HRDM- and DE-based algorithms in the cervical cancer-mimic simulation.

Methods Reconstructed position Distance error Reconstructed density Quantification error

HRDM (7.60, 0.05, −0.66) 0.77 mm 0.225 nW∕mm3 5.57%

DE (9.25, −0.73, 1.93) 2.41 mm 0.358 nW∕mm3 50.32%

Table 2 Optical properties of each organ for the gastric cancer-mimic simulation (in units of mm−1).

Muscle Heart Gastric pouch Liver Kidneys Lungs

μa 0.23 0.11 0(0.21) 0.45 0.12 0.35

μ 0
s 1.00 1.10 0(1.70) 2.00 1.20 2.30

Note: The values listed in parentheses are the parameters used in the DE model-based algorithm.

Fig. 2 Digital mouse model for irregular shape phantom simulation. (a)
Torso of the digital mouse atlas with an ellipsoid source beside the sto-
mach; (b) Simulated light flux distribution on the surface of the mouse.
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cervical cancer-mimic simulation, the power of the source was
set to be the 1 nW for simplicity, and the power density was
calculated as 0.159 nW∕mm3. The measured light flux distribu-
tion on the surface of the digital mouse was simulated by
MOSE, as shown in Fig. 2(b). The reconstructed results for
both the HRDM-based and the DE-based algorithms were
obtained and are presented in Fig. 3, where Fig. 3(a)–3(c) pre-
sents the coronal, axial and sagittal view results of the HRDM
based algorithm, and Fig. 3(d)–3(f) shows those for the
DE-based algorithm. The pink sphere represents the actual
source, and the colored domains around it are the reconstructed
sources. The detailed quantitative comparison results are listed
in Table 3. Similarly, more accurate and acceptable results were
obtained by the HRDM-based algorithm than the DE method.
The distance error of the HRDMwas 0.63 mm, which was smal-
ler than the size of the actual source and much better than that

of the DE (3.05 mm). On the other hand, a more accurate quan-
tification result was obtained by the HRDM, in which the recon-
structed source power density was 0.149 nW∕mm3 with the
quantification error of 5.88%. The reconstructed source power
density of the DE was overestimated (greater than 150%) be-
cause of neglecting the non-scattering region. The comparison
results demonstrated the accuracy of the HRDM-based
algorithm in the irregular shape phantom, and also revealed its
superiority to the DE-based algorithm when the non-scattering
region cannot be neglected.

3.2 Physical Phantom-Based Experimental
Demonstration

A cylindrical phantom made of nylon was designed and
employed to perform the imaging experiment. The dimensions

Fig. 3 Reconstructed results of the HRDM- and DE-based algorithms. (a) to (c) present the coronal, axial and sagittal view results of the HRDM-based
algorithm, and (d) to (f) show those of the DE-based algorithm. The pink sphere represents the actual source, and the colored domains around it are the
reconstructed sources.

Table 3 Results of the HRDM- and DE-based algorithms in the gastric cancer-mimic simulation.

Methods Reconstructed position Distance error Reconstructed density Quantification error

HRDM (25.97, 11.43, 22.74) 0.63 mm 0.149 nW∕mm3 5.88%

DE (28.46, 10.71, 21.76) 3.05 mm 0.409 nW∕mm3 157.05%
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of the phantom were 30 mm in diameter and 30 mm in height.
Two different size holes were drilled into the phantom to hold
the light source and to simulate the cavity organ. The No. 1 hole
was employed to hold the luminescent liquid extracted from a
luminescent light stick (Glowproducts), with a radius of 1 mm
and a depth of 16 mm; the No. 2 hole had a 3 mm radius and
18 mm depth and was used to simulate the cavity organ. The
detailed schematic diagram is shown in Fig. 4. A luminescent
light source with a 2 mm height and a 1 mm radius was formed
by injecting 6.28 mm3 luminescent liquid into the No. 1 hole,
with its center at (3, 0, 0) mm and a power density of
0.224 nW∕mm3.25 At the same time, a cavity organ with a
13 mm height and a 3 mm radius was constructed by blocking
the top of the No. 2 hole with a nylon rod of 5 mm in length. The
central wavelength of the luminescent light source was about
650 nm, so the measured optical properties of the nylon phantom

at 660 nmwere used: the absorption coefficient was 0.0138 mm−1

and the reduced scattering coefficient was 0.91 mm−1.35

After the phantom was mounted on the rotation stage and
rotated a complete 360 deg, four equally spaced bioluminescent
images and the reference white-light images were acquired
using a dual-modality molecular imaging prototype system of
ZKKS-Direct 3D (jointly developed by Guangzhou Zhongke
Kaisheng Medical Technology Co., Ltd. and Xidian University),
and mapped onto the surface of the phantom using the surface
light flux reconstruction method.36 Based on the mapped surface
light flux distribution, the luminescent light source was recon-
structed using the HRDM-based and the DE-based algorithms,
as shown in Fig. 5. Therein, Fig. 5(a)–5(c) presents the coronal,
axial and sagittal view results of the HRDM-based algorithm, and
Fig. 5(d)–5(f) shows those of the DE-based algorithm. The
detailed quantitative comparison results are listed in Table 4.
From Fig. 5 and Table 4, we find that a similar conclusion
can be addressed as the one obtained for the simulation demon-
strations. More accurate reconstructed results were obtained by
the HRDM-based algorithm than those of the DE-based one,
as shown in Table 4. However, the superiority of the HRDM-
based algorithm over the DE one was not as obvious as the one
presented in the simulation demonstrations. This may be caused
by the unpredictable factors existing in the imaging experiment,
such as the obliquity of the phantom, the errors caused by the
registration and mapping of the 2D bioluminescent images
onto the 3D phantom surface, and the inaccuracy of the optical
parameters. Overall, the cylindrical phantom experimental results
demonstrated the acceptable accuracy of the HRDM-based algo-
rithm and its superiority to the DE-based method.

Fig. 4 Schematic diagram of the cylindrical phantom. (a) and (b) show
the vertical-view and lateral view of the phantom, respectively.

Fig. 5 Reconstructed results of the HRDM- and DE-based algorithms. (a) to (c) present the coronal, axial and sagittal view results of the HRDM-based
algorithm, and (d) to (f) show those of the DE-based algorithm. The pink sphere represents the actual source, and the colored domains around it are the
reconstructed sources.
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3.3 In vivo Gastric Cancer-Bearing Mouse Experiment

An in vivo gastric cancer-bearing mouse experiment was con-
ducted to evaluate the performance of the HRDM-based algo-
rithm. A female athymic BALB/c nude mouse about six weeks
old was employed to perform the gastric cancer detection. Prior
to the experiment, the mouse was anesthetized and the left upper
abdomen of the mouse was carefully opened with a 2 to 3 cm

incision to expose the stomach of the mouse. 5 × 106 SGC7901-
Luc-GFP cells were then inoculated into the subserosa layer of
the gastric wall. Finally, the abdominal wall and skin were
sutured with prolene.

Twenty-one days after the SGC7901-Luc-GFP cells were
inoculated, the D-luciferin solution (150 mg∕kg body weight)
was injected into the peritoneal cavity of the mouse. Four
equally spaced bioluminescent images and the reference
white-light images were acquired using the dual-modality mole-
cular imaging prototype system and were mapped onto the sur-
face of the mouse using the surface light flux reconstruction
method.35 The anatomical structure of the mouse was also
obtained using the dual-modality molecular imaging prototype
system and the corresponding optical properties are calculated
in Table 5.37 Based on the mapped surface light flux distribution
and the acquired anatomical structure, the distribution of the
inoculated SGC7901-Luc-GFP cells was reconstructed using
the HRDM- and DE model-based algorithms respectively.
Figure 6 shows the detection results, where Fig. 6(a) and 6(b)
presents results of the HRDM-based algorithm, Fig. 6(c) and
6(d) shows those of the DE model-based algorithm, Fig. 6(a)
and 6(c) is the 3D views of the results, Fig. 6(b) and 6(d) is
the enlarged views of the stomach, and Fig. 6(e) presents the
necropsy observation of the ill-stomach.38 Considering the gold-
standard features of the necropsy observation, we qualitatively
compared the reconstructed distribution of the SGC7901-Luc-
GFP cells with the necropsy observation results. From Fig. 6,

Table 4 Results of the HRDM- and DE-based algorithms in the physical phantom experiment.

Methods Reconstructed position Distance error Reconstructed density Quantification error

HRDM (3.82, −1.01, −0.99) 1.63 mm 0.218 nW∕mm3 2.61%

DE (1.33, 1.18, −1.51) 2.54 mm 0.261 nW∕mm3 16.34%

Table 5 Optical properties of each organ for the in vivo gastric cancer-bearing mouse experiment (in units of mm−1).

Muscle Heart Gastric pouch Liver Kidneys Lungs

μa 0.0086 0.1382 0(0.0263) 0.8291 0.1550 0.4596

μ 0
s 1.2584 1.0769 0(1.5492) 0.7356 2.5329 2.2651

Note: The values listed in parentheses are the parameters used in the DE model-based algorithm.

Fig. 6 Detection results of the SGC-7901-Luc-GFP cells, where Fig. 6(a)
and 6(b) present results of the HRDM-based algorithm, Fig. 6(c) and 6(d)
show those of the DE model-based algorithm, Fig. 6(a) and 6(c) are
the 3D views of the results, Fig. 6(b) and 6(d) are the enlarged views
of the stomach, and Fig. 6(e) presents the necropsy observation of the
ill-stomach.38

Fig. 7 Reconstruction results of the HRDM-based algorithm for the
simulation in which the HRDM is invalid. (a) Results of the coronal
view; (b) Results of the axial view.
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we intuitively find that the reconstructed distribution of the
SGC7901-Luc-GFP cells using the HRDM-based algorithm
was more consistent with the necropsy observation than that
obtained by the DE-based algorithm. The in vivo gastric cancer-
bearing mouse experiment illustrated that the HRDM-based
algorithm has great potential for the application of gastric cancer
detection.

4 Discussions and Conclusion
We have provided an HRDM-based reconstruction algorithm for
the application of BLT in the detection of cavity cancer, in which
a hybrid light transport model and the sparse regularization tech-
nique were incorporated. In the algorithm, the HRDM was first
applied to 3D complicated and irregular geometries and then
utilized as the forward light transport model to describe the bio-
luminescent light propagation in tissues. Reconstructed results
for both the different shape geometries-based simulations and
the physical phantom-based experiment have been illustrated.
Both the localization and quantification results demonstrated
the accuracy and effectiveness of the HRDM-based algorithm
and revealed its essentiality and superiority by comparing
it with the DE model-based algorithm. Furthermore, an in vivo
gastric cancer-bearing mouse-based experiment was con-
ducted, and the preliminary results demonstrated the feasibility
and potential of the HRDM-based algorithm in the application
of gastric cancer detection. However, further applications of
the HRDM-based algorithm in the whole-body small animal
imaging are restricted because the DE is inaccurate or invalid
in the low-scattering region or when the light source is close to
the boundary.

To quantitatively illustrate the influence of the position of the
light source on the results of the HRDM-based algorithm, a het-
erogeneous geometry-based simulation was performed by chan-
ging the position of the light source. In the simulation, the same
size of the geometry as that used in the cervical cancer-mimic
simulation was employed. At the same time, the same biolumi-
nescent source was set at (5.5, 0, 0) mm, with a boundary-
to-boundary distance between the source and cavity organ
being 0.5 mm, which was smaller than one mean free path
(0.627 mm). The reconstructed results of the HRDM-based
algorithm for the simulation are shown in Fig. 7, where
Fig. 7(a) presents the coronal view of the results and Fig. 7(b)
is the axial view. We found that poorly reconstructed results
were obtained, with the localization error being 2.21 mm and
the quantification error being 70.88%. The results revealed
the limitations of the HRDM-based reconstruction algorithm,
which would be inaccurate when the light source is close to
the boundary. To overcome the limitations, high order approx-
imation models of the RTE, such as the simplified spherical har-
monics approximation (SPN) model, should be utilized to
replace the DE in the forward hybrid light transport model.
The incorporation of the high order approximation model can
also clear up other limitations of the HRDM, such as the depen-
dency of the DE on the high scattering property.

In conclusion, the numerical simulation, phantom and in vivo
experimental results demonstrated that the HRDM-based recon-
struction algorithm would broaden the application of BLT tech-
nology and may provide great potential for the applications of
detecting cavity cancer. Our further study will focus on the
improvement of the HRDM-based reconstruction algorithm
for the application of whole-body imaging.
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