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Abstract. The advent of molecularly targeted therapies requires effective identification of the various cell types of
non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytol-
ogy specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly
recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve
tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational
imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular struc-
tures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear
segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These
features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples
derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis
of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would
allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-
the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular
structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology
specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas. © 2012 Society of

Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.6.066017]
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1 Introduction
Lung carcinoma is the most prevalent type of cancer in the
world, and it is responsible for more deaths than other types
of cancer.1 Across the globe, five-year survival rates for lung
cancer patients range from 6% to 14% for men and 7% to
18% for women.1,2 Forover 50 years, lung cancer has been
viewed as a relentlessly progressive, overwhelmingly fatal dis-
ease, essentially because the utility of radiological screening
remains unproven and pathologists have had only limited suc-
cess in differentiating small cell from non-small cell carcinoma
and staging resection specimens.3 This has led to the use of the
term non-small cell lung carcinoma (NSCLC),as a reflection of
this difficulty.3

The 21st century has given birth to a revolution in the treat-
ment, classification, and detection of lung cancer that promises
to radically enhance survival of lung cancer patients for the first
time in decades.4 In particular, the advent of molecularly

targeted therapies makes identification of the various histologic
cell types and subtypes of lung cancer more important. For
example, adenocarcinoma patients should be tested for epider-
mal growth factor receptor (EGFR) mutations as an indication of
responsiveness to EGFR tyrosine kinase inhibitor.5–7 In addition,
an exclusion of a squamous cell carcinoma diagnosis is required
for NSCLC patients prior to treatment with bevacizumab
because of potential life-threatening hemorrhage.8,9 As a result,
additional molecular tests are frequently involved in reaching a
definitive diagnosis for targeted therapies.10,11 However, most
lung carcinomas are not resected and are diagnosed and classi-
fied using small biopsies or cytology specimens.12,13 Hematox-
ylin and eosin (H&E) stain of tissue sections, which is currently
the gold standard for histologic diagnosis, requires hours to days
for tissue transfer, processing, sectioning, and staining, and it
still cannot always differentiate NSCLC cell types and subtypes.
Cytology results are typically faster, but the material is even
more limited in volume, and reliably separating adenocarcinoma
from squamous cell carcinoma is sometimes impossible. Finally,
immunochemistry may be useful in helping to make this distinc-
tion, but this method adds more time to the diagnostic process
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and consumes tumor cells. Therefore, the ability to rapidly
recognize different cell types and subtypes of lung cancer
with minimal tissue consumption will not only facilitate the
diagnostic process, but also enable maximum preservation of
tissue samples for subsequent molecular testing for targeted
therapy.11 Given the risks and cost of lung biopsy, it would there-
fore be beneficial to develop techniques that enable fast exam-
ination of excised biopsy samples as a preliminary test for
separating general cell types of lung cancer before a follow-
up molecular analysis, with the aim of reducing the number
of required biopsies and providing equal or greater accuracy
relative to existing testing methods.

As a label-free imaging technique, CARS microscopy14,15

holds great potential for this type of diagnostic application
by significantly minimizing sampling error and realizing max-
imum preservation of specimen for follow-up molecular tests.
By capturing intrinsic molecular vibrations to create optical con-
trast, CARS enables cellular imaging with submicron level spa-
tial resolution, as well as video-speed imaging.16–18 Two laser
beams are commonly used to probe designated molecular vibra-
tions and produce CARS emission through a four-wave mixing
process.19 Because of its high resolution and label-free imaging
capability, CARS microscopy has been used to visualize various
tissue structures, such as skin20 andbrain,21 as well as DNA
backbone structures.22 Nevertheless, to realize the diagnostic
value of CARS, we must extract and analyze quantitative infor-
mation from the digital CARS images in order to meet the
rigorous evaluation criteria required for objective diagnosis.

Accordingly, we reported a pattern recognition and classifi-
cation strategy that integrates CARS imaging with quantitative
image computing techniques for cancer diagnosis.23–27 This
strategy is based on extraction and calibration of a series of
pathologically related features for disease identification, thus
providing meaningful diagnostic information with reproducible
results. The developed platform has been successfully demon-
strated using a number of disease models, including lung, breast,
and prostate cancers.23–27 In spite of this progress, the developed
platform has thus far shown limited accuracy (around 70% to
75%)25 for separation of adenocarcinoma from squamous cell
carcinoma, two major cell types of NSCLC. This difficulty is
not surprising and it corresponds with the clinical difficulty
in differentiating these two cell types using morphology
alone.28 However, as discussed above, definitive diagnosis of
these cell types is increasingly required.29 Accordingly, we
have further exploited the potential of CARS for the identifica-
tion of cancer cell types by extending the previously developed
two-dimensional (2-D) image analysis framework into a three-
dimensional (3-D) nuclear segmentation, feature extraction, and
classification system. As a nonlinear multiphoton imaging
method, CARS provides superior optical sectioning capability,
enabling acquisition of individual 2-D images from the same
field of view but different imaging depths.16,30 Such an image
stack is usually called a z-stack. Using appropriate interpolation
methods, a z-stack can be reconstructed into a 3-D volume.
Throughout the remainder of the discussion, the terms z-stack
and volume will be used interchangeably, as they both refer
to a 3-D data structure. Such 3-D data analysis system is capable
of extracting cell morphology information that accurately cap-
tures cells in their native state, thus effectively eliminating cer-
tain artificial effects posed by 2-D data analysis. For example,
using 2-D data analysis, the same cell nucleus can be measured
as different dimensions, depending on where the 2-D sectioning

of the cell takes place. This sectioning artifact leads to confusing
measurements, as a nucleus will be imaged several times, in sev-
eral slices, and will have a different size in each of these slices.
Taking this effect onto a whole image scale, where many cells
are imaged in the same image plane. Only a small portion of
these cells will be measured at the correct sizes, while the
remaining cells will be measured as a different size rather
than their real maximum cross-sectional dimension. We treat
this effect as a sampling noise, which can hide the real size
of a cell, rendering reliable analysis difficult. In contrast, a
3-D measurement would provide access to the nucleus as a
whole and allow measuring real nuclear size represented by
volume, potentially improving the classification accuracy
between non-small cell carcinomas.

In the present work, we focus on developing a CARS-based
3-D diagnostic imaging system for nuclear segmentation and
cancer cell type classification. Different mouse lung cancer
models were developed by injecting human lung cancer cell
lines, including adenocarcinoma and squamous cell carcinoma,
as described below, into the lungs of nude mice. CARS images
were acquired from normal lung tissues and different cell types
of cancer lesions ex vivo. By stacking all image slices from one
z-stack, as mentioned above, into a single data structure, a 3-D
volume is formed. The generated volumes show cell nuclei as
dark, roughly ellipsoidal structures surrounded by brighter
cytoplasm tissues richer in CH2 structures.

For the purpose of this study, it is imperative that the volume
be automatically partitioned, or segmented, into small regions, or
clusters, whose boundaries adhere to image edges as accurately
as possible. If this requirement is achieved, isolating those
regions containing nuclei and extracting their physical character-
istics for classification become trivial tasks. This partitioning, or
segmentation, could be achieved by a myriad of well-established
data clustering methods that utilize image location and intensity
information, such as the k-means algorithm31 or image statistics
like the expectation maximization algorithm.32 However, these
classical segmentation approaches pose a major limitation in
that they minimize global energy functions, meaning they oper-
ate on the dataset as a whole and generate clusters that satisfy
global conditions, which frequently results in under segmenta-
tion error.33 Undersegmentation results in image points belong-
ing to different objects lumped into single clusters; for example, a
cluster contacting a cell nucleus will have a boundary that does
not adhere to nuclear boundaries but also encompasses parts of
the image background. As such, this would not be an efficient
method of accurately segmenting cell nuclei, which are often
too small with respect to the size of a volume. The use of a global
clustering approach on such a large dataset also requires large
memory capacity and computing power, a requirement that
might hinder efficient execution of segmentation and follow-
up diagnosis.

To circumvent these problems, superpixel-based local clus-
tering was used to perform segmentation and generate clusters
that capture real image boundaries with great accuracy in 2-D
images33 and then finally extended to 3-D images in which they
are called supervoxels. We designed a modification of the sim-
ple linear iterative clustering (SLIC) algorithm to compute 3-D
supervoxels.34 Additionally, we expanded the definition of the
feature vector used in clustering to include the entropy of infor-
mation in 3-D volumes; this amplifies image edges and circum-
vents the low contrast in CARS images. In this clustering
process, the 3-D volume is partitioned into small regions
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based on local affinity information, and voxels are grouped into
one cluster according to the similarity of their features. In this
method, unlike k-means, a data point is not assigned to a cluster
unless it falls within a small region of interest around that clus-
ter’s center. The clustered dataset is used to extract pathologi-
cally relevant features about the cell nuclei, such as volume and
spatial configuration, which are then used to perform classifica-
tion of lung cancer cell types.

Our results showed that the refined 3-D strategy can accu-
rately delineate nuclear structures and has significantly
improved the diagnostic accuracy between adenocarcinoma
and squamous cell carcinoma. As such, these findings hold sub-
stantial potential to provide fast diagnosis with minimal tissue
consumption while effectively preserving tissue specimens for
follow-up molecular tests.

2 Materials and Methods

2.1 CARS Microscopy

The schematic of the setup was previously described.24 One
z-stack was imaged for each mouse, and a total of 40 (30
from tumor-bearing mice and 10 from normal control) z-stacks
were examined. The imaging depths of these stacks range from
35 to 50 μm with 1 μm separation between images. For this
study, a60x, NA1.2 water immersion objective (IR UPlanApo,
Olympus, Melville, NJ) with a lateral resolution of 0.6 μm and a
axial resolution of 1.5 μm was used.35 After CARS imaging, all
specimens were marked to indicate the sampled locations, sec-
tioned through marked positions, and finally stained with H&E
to be examined for the type of lesion as a standard histology
control.

2.2 Mouse Tumor Models

Human lung cancer cell lines, A549 adenocarcinoma and NCI-
H226 squamous cell carcinoma, were obtained from the Amer-
ican Type Culture Collection (ATCC, Manassas, VA). A549 and
NCI-H69 were maintained in DMEM (Invitrogen, Grand Island,
NY) medium. Both media were supplemented with 10% FCS,
100 units∕mL penicillin, and 100 μg∕mL streptomycin. Cancer
cells were cultured in a 37 °C humidified incubator with a

mixture of 95% air and 5% CO2. All experiments were per-
formed on exponentially growing cells with a cell population
doubling time of approximately 24 to 36 h. Forty BALB/c
nude mice (12-week-old females, Charles River, Wilmington,
MA) were ordered for this study. Fifteen mice were assigned
to each cancer group, e.g., adenocarcinoma and squamous
cell carcinoma, while 10 mice were used as controls. Animals
were anesthetized by Ketamine and Xylazine injection. A right
posterolateral thoracic incision was made, and the thoracic wall
was exposed by blunt dissection of the muscles. The tip of a
0.5-inch, 27-gauge needle was advanced by 3 mm under visual
control through the translucent pleura at the third intercostal
space at the dorsal midaxillary line into the pleural cavity
where A549 or NCI-H226 cells (1 million∕20 μL PBS) contain-
ing 1 mg∕mL Matrigel (BD Biosciences, Bedford, MA) were
injected. The same volume of PBS containing 1 mg∕mL Matri-
gel without cells was injected for the control group. This group
only serves as a control for the mouse tumor model but not for
the diagnostic analysis. The implanted tumors were allowed to
grow for two weeks before the mice were sacrificed for imaging
of tumor tissues in their lungs. CARS imaging was performed
close to the surface of the tumors. All processes were performed
according to the guidelines of The Methodist Hospital Research
Institute (TMHRI, Houston, TX).

2.3 Image Acquisition

Mouse lung tissues were placed on a cover slip, which was
reversely placed on the chamber to keep the samples from
being pressed as described in Ref. 27. The beating frequency
was tuned to 2845 cm−1 to probe the CARS signals originating
from symmetric CH2 stretching bonds.16 The CARS signal at
around 663 nm was collected by the same objective using
the backward (Epi-) detection scheme.

2.4 Quantitative Image Analysis

2.4.1 Cell nucleus segmentation

We developed a clustering and labeling pipeline based on super-
pixels,36–38 which are small image patches produced by applying
a clustering algorithm to localized regions of a volume. Figure 1

Fig. 1 Schematic illustration of the 3-D imaging, image analysis, and classification strategy. M: mirror, OPO: optical parametric oscillator, DL: delay
line, DM: dichroic mirror, L: lens, MO: microscope objective, BT: breast tissue, BPF: band-pass filter, PMT: photomultiplier tube. CARS output was
collected in the epi-direction. Stacking all image slices from one z-stack into a single data structure formed a 3-D volume. A SLIC superpixel-based local
clustering approach was developed for 3-D segmentation of these nuclear structures. Segmented nuclei were then fitted with ellipsoids, enabling
consistent measurements of image features related to nuclear morphology and distribution. Using these disease-related features, a classification system
was developed for separation of lung cancer cell types.
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shows the overall process of image segmentation, feature extrac-
tion, and classification. The benefit of superpixels lies first in
their ability to capture fine image details such as edges and gen-
erate patches that adhere to natural boundaries. The boundary of
a superpixel containing a cell nucleus, for example, adheres very
well to the boundary of that nucleus. Second, the computational
load of analysis tasks farther down the data analysis pipeline
is reduced by the reduction in the number of data points, as
analysis will be performed on clusters of pixels rather than
individual pixels. For the remainder of this paper, the terms
supervoxel and cluster carry the same meaning and are used
interchangeably.

Multiple algorithms for creating superpixels exist, such as
Refs. 33, 39, and 40, but the SLIC algorithm has shown superior
performance in terms of segmentation errors, image boundary
detection, and computational recourses.32 SLIC operates as a
modified k-means algorithm that performs clustering in a subset
of clusters confined to small regions of interest in the volume,
rather than partitioning datasets into k clusters to which any data
point can belong. Thus, a pixel does not potentially belong to
any of the k clusters, but instead to a small subset of clusters in
its immediate neighborhood. In this strategy, pixels having simi-
lar characteristics are grouped together, but the limited search
area ensures that pixels distant from each other, such as very
similar pixels belonging to two different nuclei, are never in
the same cluster. This reduces under segmentation error, and
at the same time supports the assumption that later processing
steps can treat a cluster as a single nucleus. Although this defi-
nition of SLIC superpixel clustering applies to datasets consist-
ing of 2-D images, it can be easily extended to 3-D image stacks,
or volumes, where data points are voxels instead of pixels. In
this case, the clustering outcome is a volume partitioned into
small 3-D clusters called supervoxels. In this report, we present
the operation of SLIC in 3-D volumes and our extension to the
feature vector used in clustering.

To perform supervoxel clustering, each voxel (v) in a volume
is represented by a vector of features fv ¼ ½Lv; Av; Bv; xv;
yv; zv; Hv�T where Lv, Av, and Bv represent CIELAB colorspace
values at v. xv, yv, and zv represent the coordinates of v within a
volume, andHv represents the entropy of information value at v.
The entropy of a voxel is computed by calculating the entropy
of the dataset represented by voxel v and all its immediate
neighbors using 8-connectivity and the equation

HðVÞ ¼
X

∀n
pðinÞ log pðinÞ; (1)

where n are all the 8-connected neighbors of v, in is the gray-
scale value of a neighbor, and pðinÞ is the probability of that
value in the neighborhood. Entropy was added to the feature
vector representing a voxel for the added reliability it provides
for distinguishing edges during clustering. It can represent varia-
bility in information,3 and, as such, it has high energy in image
regions near natural edges.

Clustering was initialized by distributing cluster centers at
uniform spatial intervals in the volume; the values of the feature
vectors f at each cluster center served as the initial centers of
those supervoxels. The algorithm searches for potential data
points to associate with each cluster center based on the dis-
tance, measured as the Euclidean distance in the 7-D space
of the feature vectors, between the data point and the cluster
center. The search region of interest is limited to the cube
whose vertices are the immediate neighboring cluster centers

and the cluster center of interest at its center. For each iteration,
the algorithm associates each data point to the closest cluster. At
the end of an iteration, a new cluster center for each supervoxel
is computed as the mean of all voxels assigned to it. Clustering
terminates when the residual error computed as the sum of all
L1 distances between new cluster centers and old cluster centers
is below a preset threshold; in this study, the threshold was set
at 0.2.

2.4.2 Nucleus selection (labeling)

Following the partitioning of the volume into supervoxels, a pro-
gram with a simple user interface was created to perform label-
ing of those supervoxels that correspond to cell nuclei. This
program operates in two repeating steps (Video 1) during
which all cell nuclei can be manually selected. It is worth men-
tioning that labeling is an efficient process, as labeling an entire
512 × 512 × 80 volume consumes about five min.

2.4.3 Classification and diagnostic analysis

Thus far, the focus has been on sifting through a very large data-
set of three-dimensional images to find a small subset of data
that contains information relevant to diagnosis, namely the vox-
els corresponding to cell nuclei. Hereafter this subset of data is
used to compute physical features that contain enough informa-
tion to represent the cell nuclei and build a classifier that can
perform automatic identification of cancer cell types.

To ensure consistency in extracted features across different
volumes, we assumed a cell nucleus to be roughly ellipsoidal
in shape, and, as such, an ellipsoid was fitted to each contiguous
set of 3-D points representing a nucleus. The features we used
for each nucleus were the physical features of the ellipsoid that
best fitted the convex hull of the points comprising that nucleus;
in other words, the ellipsoid that best fitted the smallest region in
space that could enclose all the points comprising a nucleus.
Computed features were the volume and the lengths of the
major and minor axes of the fitted ellipsoid. Furthermore, fea-
tures representing the spatial position of a nucleus relative to its
neighbors were computed to incorporate information about the
distribution of cell structures. We constructed the Delaunay

Video 1 Demonstration of nuclear labeling process. (MOV, 3.7 MB)
[URL: http://dx.doi.org/10.1117/1.JBO.17.6.066017.1]
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triangulation41–43 to define the connectivity of nuclei in the sam-
ple. Using the triangulation, four features were computed for
each nucleus, including the distance to the farthest neighbor, dis-
tance to the nearest neighbor, mean distance to neighbors, and
orientation relative to the nearest neighbor. These distances were
respectively represented by: the length of the longest edge of the
Delaunay triangulation structure attached to the nucleus of inter-
est, the length of the shortest Delaunay edge attached to the
nucleus, the average length of all Delaunay edges attached to
a nucleus, and the angle between the major axis of a cell and
the major axis of its nearest neighbor.

We performed segmentation, labeling, and feature extraction
from 15 volumes corresponding to adenocarcinoma and another
15 volumes from squamous cell carcinoma. In addition, because
we wanted to demonstrate the superiority of information
extracted in three dimensions over that extracted from two
dimensions, we used three slices from each image stack and
extracted the same features from those to serve as a 2-D bench-
mark. It is worthnoting that all features can be mapped to any
dimension, e.g., an ellipsoid mapped to two dimensions
becomes an ellipse; volume becomes area. The major difference
between 3-D and 2-D representation of the features is that an
ellipse has only two equatorial radii, one major and one
minor axis, as opposed to an ellipsoid that has three such
radii. Compared to 2-D, 3-D measurements resulted in one
more feature as minor axis length since there are three axes
in a 3-D ellipsoid.

Since each volume was identified by the statistics of its fea-
tures, mean, standard deviation, skewness, and kurtosis of the
distribution function were calculated for each of the seven
(in 2-D) or eight (in 3-D) features in a given volume. These
quantities constituted the 32 features used to build a classifier
capable of characterizing a volume as either an adenocarcinoma
or squamous cell carcinoma cell type. The leave-one-out
approach, also used for differential diagnosis of lung carcinoma
cell types by Ref. 24, was utilized to demonstrate that the desig-
nated statistical features could be used to perform automatic
diagnosis. We detail this method through the following example.
If samples from each cell type were labeled 1 through 15, A1
through A15 for adenocarcinoma samples and S1 through S15
for squamous cell carcinoma, samples A1 and S1 would be
excluded on the first iteration, and the remaining 28 samples
would be used to train the a classifier, with the two excluded
samples (A1 and S1) used to validate that classifier through test-
ing whether it can assign them to their correct subtype. On the
second iteration, sample A1 would be left out with sample S2,
and the training/model testing process is repeated. This process
is repeated over enough iterations to exhaust all possible parings
of excluded samples. As a benchmark in this study, the process
was performed both in 2-D and in 3-D datasets.

3 Results

3.1 CARS Images of Different Types of Lung Cancers

Figure 2 shows representative CARS images and corresponding
H&E results of normal lung tissue and two cell types of non-
small cell lung cancers. Tissue structures were clearly identified
on the cellular level. The normal lung tissue sample is predomi-
nantly composed of well-organized fibrous and matrix struc-
tures, consisting of the bronchi and supporting matrix for
alveoli [Fig. 1(a) and 1(b)]. Cancerous regions showed much
denser cellularity compared with normal regions, and the size

and configuration of the cells corresponded with these param-
eters, as shown by H&E staining [Fig. 1(c) through 1(h)].
Commonly used pathological features were also identified for
individual cell types of cancers, including vesicular nuclei, pro-
minent and moderately abundant foamy cytoplasm44 for adeno-
carcinoma [Fig. 1(c) and 1(d)], and pleomorphic malignant cells
containing keratin with abundant cytoplasm and formation of
intracellular bridges45 for squamous cell carcinoma [Fig. 1(e)
and 1(f)].

3.2 Segmentation and Labeling of 3-D Volumes

Segmentation of each volume, or z-stack, resulted in new
volume data, which were partitioned, or segmented, into super-
voxels. For all subsequent processing steps, we considered a
supervoxel to represent one data point. This is possible based
on the assumption that a well-performing clustering algorithm
will generate supervoxels in which all individual voxels belong
to the same class. Indeed, as illustrated by Fig. 3, all voxels in a
supervoxel only represent either cell nuclei or background. A
sample slice of a segmented volume is presented in Fig. 3(a),
and the same slice after clustering is shown in Fig. 3(b).
The red regions represent the boundaries of supervoxels. The
boundaries in certain regions appear as surfaces rather than

Fig. 2 CARS images of mouse lung tissues taken at Raman shift of
2845 cm−1 and their corresponding H&E stained images: (a) (b) normal
lung, (c) (d) adenocarcinoma and (e) (f) squamous cell carcinoma
derived from the same mouse, respectively. Scale bars: 50 μm.
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lines because the chosen slice passes through the boundary of
the 3-D supervoxel. It is notable that those supervoxels enclos-
ing nuclei are completely separable from those enclosing back-
ground and that supervoxel boundaries accurately capture
nuclear boundaries. It is this preliminary segmenting of the
volume into clusters belonging to either nuclei or background
that allowed us to proceed to the next step in the image analysis
framework, namely, labeling of those supervoxels that represent
nuclei. Figure 3(c) further shows the outcome of labeling the
clustered volume where the boundaries of the labeled supervox-
els accurately capture the boundaries of the nuclei, while the 3-D
boundary of a representative cell nucleus is illustrated in Fig. 3
(d). It is worth mentioning that an accurate boundary was deter-
mined in all three dimensions as a result of a smooth segmenta-
tion process. Video 2 shows representative reconstructed nuclei
after segmentation in a whole squamous cell carcinoma volume.

3.3 Diagnostic Analysis of Lung Cancer Cell Types

As described in the Methods section and shown in Fig. 3(c) and
3(d), the segmented cell nuclei were fitted with ellipsoids for
consistent extraction of feature information. Figure 4 illustrates
a representative case of the fitting results on all the nuclei in a
squamous cell carcinoma volume, where all ellipsoids are
plotted with their color representing different depths within
the z-stack. This mesh in Fig. 4 is representative of the real
size and distribution of nuclei within the imaged tissue, and
it was used to extract pathologically relevant information,
namely, the features defined in the Methods section, to be
utilized in automatic differential diagnosis. As such, the above-

defined features were measured across different volumes consis-
tently following the same procedure. Since multiple cell nuclei
existed in each volume (Figs. 3 and 4), the measurement resulted
in a probability distribution function (PDF) for each measured
feature in a given volume. We found that distributions of five out
of eight measured features showed significant difference
between 2-D and 3-D measurements using data from all studied
volumes through both 2-D and 3-D computation (Fig. 5).They
were mostly related to the size, shape, and orientation of nuclear
structures. We note here that features related to nuclear size and
shape failed to show a clear separation between the two cancer
cell types in 2-D measurements [Fig. 5(a) through 5(c)]. In con-
trast, 3-D measurements effectively captured the difference
between the two cell types by showing clear separations of
their peak positions [Fig. 5(e) through 5(g)]. While nuclear
orientation shows a clear peak with 2-D measurement
[Fig. 5(d)], this peak turns into an even distribution across dif-
ferent angles in 3-D [Fig. 5(h)]. The presented PDF curves were
estimated from the measured data, i.e., they represent the histo-
grams of the features processed with a smoothing kernel causing
the curves in some cases to have tails in the negative side of
the number line. Measurements related to the remaining three
feature distributions, which carry information on the distance
between individual cell nuclei, failed to show clear separations
between cancer cell types both in 2-D and 3-D data and thus are
not illustrated here.

Using the calculated features, a classifier was built, as
described in the Methods section, and classification was per-
formed to separate cancer cell types. Figure 6 and Table 1 illus-
trate the automatic classification results. In Fig. 6(a) and 6(b),
results of classification using 2-D data are presented, where each
point represents one tissue sample, specifically the one that was
left out during a particular iteration. The threshold for classifi-
cation is the straight line y ¼ 0.5. Points with y ≥ 0.5 were clas-
sified as adenocarcinoma, while points with y < 0.5 were
classified as squamous cell carcinoma. For better presentation,
the graph is separated into two separate subfigures, respectively

Fig. 3 Superpixel-based 3-D nuclear segmentation process. A sample
slice of a volume is presented (a), where all voxels in a supervoxel repre-
sent either cell nuclei or backgrounds. The same slice after clustering is
shown (b), in which the red regions represent the boundaries of super-
voxels. (c) shows the outcome of labeling the clustered volume where
the boundaries of the labeled supervoxels accurately capture the
boundaries of cell nuclei. The 3-D segmented structure of a cell nucleus
is illustrated in (d). The YZ and XZ cross sections are presented in the
right and bottom panels, which were constructed from the depth stack
along the blue and green lines, respectively.

Video 2 Reconstructed cell nuclei in a whole squamous cell carcinoma
volume. (MOV, 3.5 MB) [URL: http://dx.doi.org/10.1117/1.JBO.17.6
.066017.2]]
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representing adenocarcinoma samples [Fig. 6(a)] and squamous
cell carcinoma samples [Fig. 6(b)]. Classification from 2-D data
resulted in a true positive rate of 71.98% and 65.05% for ade-
nocarcinoma and squamous cell carcinoma, respectively
(Table 1). False positive rate, in the same order, was 28.02%
and 34.95%. Classification results from the 3-D data analysis
are plotted in Fig. 6(c), where clear separation between cell
types allows for data visualization on the same graph. As
shown in Table 1, quantified classification accuracies were a
99.56% and 97.78% true positive rate for adenocarcinoma
and squamous cell carcinoma, respectively. False positive clas-
sification was 0.45% and 2.22% in the same order. The results
showed that features extracted from 3-D data analysis provided
information that significantly enhanced the classification accu-
racy and thus demonstrated proof of concept that information
extracted from 3-D image analysis and segmentation can be
used for the automatic diagnosis of lung cancer subtypes.

4 Discussion
Rapid advances in optical imaging technologies have led to sub-
stantial contributions to advancing diagnostic strategies and
improving care delivery in cancer research. To exploit the diag-
nostic value of acquired images for clinical diagnosis, an effec-
tive imaging and image analysis platform should be developed
to allow accurate evaluation of imaging data in a repeatable
manner. Thus far, several studies have explored the diagnostic
potential of CARS,23–27 promoting the translation of this label-
free technique for clinical use. These strategies were based on
extraction and calibration of a series of disease-related morphol-
ogy features for diagnosis. From this, the CARS technique has
been successfully bridged to clinical evaluations. However,
similar to the commonly used H&E stain technique, the mor-
phology-based classification system encounters difficulties in
distinguishing certain diseases, such as separation of the cell
types of NSCLC. The problem originates from the fact that
these cancer cell types often show a similar morphology,
especially in poorly differentiated areas, preventing accurate
characterization.

Taking aim at this problem, this study proposed a strategy to
increase the accuracy of NSCLC characterization by extending

2-D analytical strategies to a 3-D analytic platform. By taking
advantage of the optical sectioning capability provided by
CARS, our strategy allows analysis of cellular features in
3-D, a setting closer to the microenvironment in which the
cells reside. As illustrated in Fig. 5, five of the eight disease-
related features (volume, major axis length, lengths of the
two minor axes, and the orientation relative to the nearest neigh-
bor) showed clear separation in 3-D measurements when com-
pared to their four equivalent features from the 2-D benchmark.

In this strategy nuclear volume was first measured in 3-D to
provide size information. As discussed in the introduction, this
effectively allowed suppression of the sampling error posed by
measurements from 2-D slices. As a result, a clear separation of
adenocarcinoma from squamous cell carcinoma was observed.
In contrast, the 2-D analysis showed much broader distributions
for both cell types without clear separation of peak positions,
potentially caused by the sampling noise. Second, the sampling
error in 2-D also obscured identification of the nuclear size dif-
ference between examined cell types. It is worth mentioning that
the peaks of the major axis lengths of adenocarcinoma and squa-
mous cell carcinoma were about 6 and 5.5 μm [Fig. 5(f)], respec-
tively. Although they were well separated in 3-D measurements,
2-D measurements of the same parameter did not show a clear
difference. More importantly, both cell types showed the peak
value of major axis length between 4 and 5 μmin 2-D [Fig. 5(b)],
values that were substantially smaller than the resulting values in
3-D. These data strongly indicated that such 2-D measurements
combined values associated with both sampling noise and real
axis lengths. Specifically, if, in a given plane, we assume that all
cell nuclei have the same axis length, then the measured axis
length for a given nucleus can range from zero to its actual
length, depending on the selection of the plane. This effect is
true for every cell nucleus in that plane, resulting in a distribu-
tion of the measured value from zero to the actual length, espe-
cially when the spatial locations of individual nuclei are
unrelated. As such, a sampling noise is created that lowers
the peak position of the distribution curve away from the real
value and also broadens the distribution curve if there are var-
iations in the axis length among individual nuclei [Fig. 5(b)]. In
contrast, 3-D measurement of the same parameter resulted in
much narrower curves with clear separation of peak positions.

Fig. 4 3-D nuclear distribution of a squamous cell carcinoma volume after supervoxel-based nuclear segmentation. All ellipsoids are plotted with
their color representing different depths within the volume.
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The same observation was supported by minor axis lengths,
as well [Figs. 5(c) and 5(g)]. Third, the relative orientation
angle between neighbors showed a broad peak around 25 deg
[Fig. 5(d)]. This peak was weakened in the 3-D results
[Fig. 5(h)], where a more even distribution was observed across
the spectrum of all angles, indicating a lack of orientation in
such tumors. This distribution could be caused by the use of

animal models, instead of human tumor samples, as it is
well-known that adenocarcinomas tend to form glandular struc-
tures, while squamous cell carcinomas tend to form well-
oriented cell sheets.45,46 Consequently, by showing more ran-
dom cellular distribution patterns, the mouse tumor model
could be more poorly differentiated compared to human tumors.
Cell lines also tend to be relatively poorly differentiated, since

Fig. 5 Distribution of four representative features extracted from the segmentation results. PDF curves are fitted to the distributions to illustrate the data
structure. Left panels, (a) through (d), show results from 2-D segmentation, while right panels, (e) through (h), show results from 3-D segmentation. Data
from adenocarcinoma and squamous cell carcinoma are plotted in red and green, respectively.
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these tumors tend toward immortalization. We therefore expect a
much more prominent difference of their PDF curves in human
tumors, especially when measured in 3-D. In another sense, this
difference also supports the utility of the 3-D approach since this
method even worked well on mouse models, which are harder to
separate. However, the tremendous heterogeneity of human
tumors, as compared with only two cell lines in this study,
may pose challenges for classification that are difficult to cap-
ture in this model system. Finally, compared to the aforemen-
tioned features, a clear distinction between 2-D and 3-D
approaches could not be found relative to measurements of dis-
tance-related features. This was expected because the sampling

noise posed by 2-D does not affect the center position of cell
nuclei, which are the major determinants of cell-cell distance.

With increasing attention to development of CARS-based
microendoscopy to support label-free, in vivo, molecular diag-
nosis,47–52 another benefit of the proposed 3-D image quantita-
tion system lies in its potential for in vivo differentiation of lung
carcinoma cell types and possibly subtypes during biopsy.
Specifically, it has long been known that most lung cancers
are histologically heterogeneous and that most adenocarcinomas
have more than one histologic subtype.44 With the advent of
molecularly targeted therapies, avoiding sampling errors to
allow complete identification of the various histologic cell

Fig. 6 Visualization of 2-D and 3-D classification results. (a) and (b) present adenocarcinoma and squamous cell carcinoma results with 2-D data
analysis, respectively. Each point represents one tissue sample. The threshold for classification is the straight line y ¼ 0.5. Points with y ≥ 0.5 were
classified as adenocarcinoma while points with y < 0.5 were classified as squamous cell carcinoma. Similarly, classification results from the 3-D data
analysis are plotted (c), where clear separation between cell types allows for data visualization on the same graph.

Journal of Biomedical Optics 066017-9 June 2012 • Vol. 17(6)

Gao et al.: Differential diagnosis of lung carcinoma with three-dimensional : : :



types and subtypes within a given lung cancer becomes even
more important. CARS allows selecting biopsy sites within a
mass or nodule to minimize sampling error. Blind aspiration
biopsy or fluoroscopic guided biopsy may sample surrounding
tissues rather than the cancer and may not sample different cell
types or subtypes within a cancer; thus, they may not be repre-
sentative of the cancer as a whole. This is particularly important
for targeted therapy since any adenocarcinoma component
may respond to EGFR tyrosine kinase inhibitor therapy, but
the adenocarcinoma component may not be sampled in a
mixed cancer, such as an adenosquamous carcinoma, using
current techniques. Reducing sampling error improves the accu-
racy of obtaining tissue and increases the useful sample size for
biomarker testing. Since adenocarcinoma subtypes are asso-
ciated with different biomarkers, future research into CARS
microscopy could greatly enhance complete sampling of the
different subtypes within an adenocarcinoma. It will not only
ensure sampling of all cell types and subtypes within a hetero-
geneous lung cancer for molecular analysis at the time of
biopsy, but also facilitate the whole diagnostic process while
providing more abundant biopsy samples of the correct tissues
for biomarker studies.

In conclusion, we demonstrated a 3-D analytical strategy in
conjunction with the CARS imaging technique for fast and
accurate determination of NSCLC cell types. By stacking multi-
ple image slices from a z-stack into a single data structure, 3-D
nuclear segmentation, labeling, and measurements were realized
for extraction of disease-related features using SLIC-based
supervoxel segmentation. Classification was then performed
using the extracted features. Compared to a 2-D approach,
the 3-D strategy showed much higher efficacy with greater
than 97% accuracy and specificity for separation of NSCLC
cell types. Collectively, this strategy effectively takes advantage
of the superior optical sectioning capability of the CARS tech-
nique; meanwhile, it enables quantification of image features in
a configuration closer to the natural arrangement of tissues. By
doing so, a significant accuracy improvement was achieved for
separation of lung cancer subtypes. In addition, since no tissue
consumption or sectioning was required, the combination of
CARS and the 3-D analytical approach offers an alternative
strategy to the widely used H&E staining technique for lesion
evaluation with faster analysis times. Therefore, the developed
3-D diagnostic platform promises to provide a newmodality that
combines advanced nonlinear optical imaging methods with
quantitative bioinformatics techniques for label-free delineation
of tissue pathology, thus holding the potential to facilitate diag-
nosis while effectively preserving tissue specimens for follow-
up diagnostic tests.
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